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ABSTRACT for the error. As another example, given two similar jobs

that noticeably perform differently, diagnosis could ex-

fract related runtime information to identify major differ
nces. Also, it might be difficult to spot problems from a

G? is a graph processing system for diagnosing dis
tributed systems. It works on execution graphs tha
model runtime events and their correlations in distribute X

arge number of low-level runtime events. A useful prac-

systems. In &, a diagnosis process involves a series of < 9" . .
ce is to aggregate performance information at an appro-

queries, expressed in a high-level declarative Ianguaggriate layer. identify which aggregated componentin that
that supports both relational and graph-based operator?. ‘ayer, d ggrege P
ayer is problematic, and then drill down into the next

Each query is compiled into a distributed executiofisG g ) .
execution engine supports both parallel relational dat?Y€" Of details in an iterative process.
processing and iterative graph traversal. Effective diagnosis depends heavily on the ability
Execution graphs in &tend to have long paths and to correlate runtime events and to leverage these corre-
are in structure distinctly different from other large- lations. Previous work, especially those on path-based
scale graphs, such as social or web graphs. Tailore@nalysis [14, 7, 13, 8, 19, 26, 18, 27], has largely ad-
for execution graphs and graph traversal operations ofiressed the important problem of generating and cor-
those graphs, & graph engine distinguishes itself by relating runtime information from executions of a dis-
embracingbatched asynchronous iterations that allows  tributed system. Often the difficulty for diagnosis is not
for better parallelism without barriers, and by enablingdue to lack of information, but due to the inability to nav-

partition-level states and aggregation. igate through and process a sea of information to find out
We have applied &to diagnosis of distributed sys- what is relevant.
tems such as Berkeley DB, SCOPE/Dryad, ardt&elf In this paper, we propose®Ga distributed graph pro-

to validate its effectiveness. When co-deployed on a 60cessing system for storing runtime information of dis-
machine cluster, & execution engine can handle exe- tributed systems and for processing queries on such in-
cution graphs with millions of vertices and edges; for in- formation. Runtime information is organized as a graph,
stance, using a query in G2, we traverse, filter, and sumwhere vertices correspond to events and edges corre-
marize a 130 million-vertex graph into a 12 thousand-spond to correlations between events. Diagnosis then in-
vertex graph within 268 seconds on 60 machines. Theplves an iterative process of writing queries against the
use of an asynchronous model and a partition-level ingraph and analyzing the results of those queriéi@-
terface delivered a 66% reduction in response time wheRides a declarative language that supports relational and

applied to queries in our diagnosis tasks. graph operators that operate on the graph structure. For
example, given an error log enteya G query can be is-
1 INTRODUCTION sued to find all events (vertices) that verteis causally

Distributed applications in data centers are increasinghyfi€Pendent on, where causal dependencies are captured
important as they power large-scale web and cloud sef?Y cértain types of edges. This query usesa@ng oper-
vices. Often, the execution of such an application in-ator that G provides. From a starting vertex forward
volves a large number of cooperating processes runnina'c' ng finds a!l vertices that.cgusalllly and tran:*smvely de-
on different machines, spanning multiple software mod-p‘_':‘”d onv, while backward slicing finds all vertices that
ules and layers, tolerating and recovering from various’ IS dependent on.
machine failures and network disruptions. Increases in  Graph aggregation and summarization are another ef-
both the scale and complexity of such systems have madective way of reducing the amount of information to be
it difficult to understand and diagnose their runtime (mis-examined during diagnosis. In an execution graph, each
)behavior. vertex is associated with a context that indicates the ag-
Typical diagnosis tasks start with observing misbe-gregation units that the event belongs to. Examples of ag-
havior or anomaly, navigating through runtime informa- gregation units include static ones such as components,
tion such as logs to find relevant information, and pro-classes, and functions, as well as dynamic ones such as
cessing the information to infer root causes. For examplemachines, processes, and threads. Ag@ery can ag-
starting with a log entry with an error message, diagnosigregate information at an appropriate level. For example,
could find all relevant log entries to infer the root causeto compare executions of two jobs, a query can compute



the forward slices from the starting points of two jobs. Tois shown to be effective in diagnosis: for instance, us-
make comparison easier, the query can continue to comning a query in G2, we traverse, filter, and summarize a
pute a machine-level aggregation from the two slices130 million-vertex graphinto a 12 thousand-vertex graph
This requires diierarchical aggregation graph operator within 268 seconds on 60 machines. The optimizations
that transforms an input graph into a smaller one: it conwe introduce into &s execution engine are effective: the
denses each continuous segment of events with the sanuse of asynchronous model and partition-level interface
aggregation unit (e.g., machine) to create a single supedelivered up to a factor of 3 performance improvement
node and applies an aggregation function on those eventghen applied to graph operators in our diagnosis tasks.
to compute the an associated aggregated value. We have also studied scalability o@nd the check-

Distributed query execution in4ds supported by a pointing overhead introduced to enable failure recovery.
distributed storage and execution system that addresses The contribution of G is two-fold. First, as a tool,
the challenges of storing and processing large executio®® enables efficient distributed-system diagnosis by al-
graphs with millions or even billions of vertices effi- lowing users to write declarative queries with both rela-
ciently. In &, events and correlations are captured ontional and graph operators, and by providing a distributed
local machines as they occur during system executiorgngine that executes those queries efficiently. Second, as
leading to a natural partitioning of an execution graph. a distributed system, % execution engine targets a dif-

G?'s execution engine is tailored for execution graphsferenttype of graphs with different structural characteri
that exhibit significantly different characteristics from tics and with different type of graph operations. It allows
other large graphs, such as social and web graphs. E Patched asynchronous graph computation model and a
ecution graphs tend to have long paths corresponding tBartition-level interface, which have contributed signifi
events along a logically related progression of executioncantly to its efficiency. _
where social and web graphs have relatively small diam- ~ The rest of the paper is organized as follows. Sec-
eters. Graph operations on execution graphs are often iffon 2 introduces the system execution graph data model,
the form of graph traversal, which is again different from and the diagnosis primitives applied to the graph. Sec-
iterative graph operations that must proceed in globallyion 3 presents the operators, and the language that
synchronized rounds, such as in page-rank computatiof SUPPOrts, as well as several examples expressed in
for example. Consequently2@mbracesatched asyn-  those constructs. The design and optimization of the dis-
chronous iterations, where processing on each partition {ributed graph engine is the focus of Section 4, followed
is batched, but does not have to proceed synchronousRY implementation details in Section 5. We evaluate G
in lock steps. Both slicing and hierarchical aggregation2nd share experience in Section 6. Section 7 discusses
fall into this model that allows for improved parallelism the related work. Finally, we conclude in Section 8.
and efficiency than the bulk synchronous computation
model in previous work, such as in Pregel [24]. Barri- 2 MODEL
ers are used only at the end of graph traversal or to crea®istributed-system diagnosis in’@enters on the data
global consistent checkpoints for failure recovery. Fur-model and the operations defined on the model, which
thermore, partitions tend to contain lotaral paths be- are the topic of this section.
fore those paths connect to vertices on other partitions
due to cross-machine communication. Graph traversaf-1  Text, Paths, and Graphs
within each patrtition is therefore significant to the overal
graph traversal performance. Instead of a vertex-oriented Traditionally, system diagnosis treats runtime infor-
interface, G exposes a partition-oriented interface that mation (e.g., logs) asnstructured text and involves a te-
allows partition-level aggregation states to be maintine dious and ineffective process of going through logs using
in an appropriate data structure. This is particularly valu primitive text-processing tools such as grep. Using grep
able for hierarchical aggregation, where the choice ofon a special tag (such as a request id) captures all entries
partition-level data structure significantly influences-pe that are explicitly related to that request, but is likely to
formance. miss information that has implicit dependencies.

We have built a prototype and applied it to a  Previouswork[14,7, 13,8, 20, 18, 27] on correlating
set of distributed systems, including Berkeley DB [2], runtime information has effectively addressed this short-
SCOPE/Dryad [11, 22], and4Gtself. Berkeley DB is a  coming by capturing common causal relationship in dis-
replicated distributed key-value database that can be eafibuted systems. Avath-like abstraction is often used to
ily linked with applications. SCOPE/Dryad is a produc- track how a request flows through a distributed system.
tion data intensive computation system, which includesThis relatively simple structure is effective for request-
a distributed file system, a distributed execution enginecentric analysis and modeling, and reflects a good bal-
(Dryad), and a declarative query language (SCOPE). Gance between what an abstraction enables, the simplicity



of an abstraction, and the complexity involved in sup-in an execution graph are used to represent such correla-

porting operations on an abstraction. tions. Different types of edges can be defined for differ-
Yet, the effectiveness of a path-based model is conent types of correlations. For example, e edge con-

strained by its simplifying assumptions: by embracingnects a source event that defines/forwards an object with

paths based on requests, the model cuts off interactiors destination event that consumes that object. Network

between requests that occur in distributed systems. Fanessages or cross-thread requests are examples of such

example, Figure 1 shows a piece of code for a replicatedbjects.(c,e) and(d,e) in Figure 1 are use edges.sjnc

file system. The system receives client requests and agdge indicates synchronization of two events from two

pends them in a local cache (line 2-4). When there ardalifferent threads in order to ensure exclusive access to a

enough accumulated requests (line 6), the system batchebared object or ensure ordered inter-thread execution. A

requests, writes them to local disks (line 11), and for-fall-through edge connects two consecutive events in the

wards them to secondaries for data replication (line 12)same thread (e.g(b, c)).

The OnPersistRequests call in Figure 1 is in fact a batch G? provides primitives to define and customize graph

operation of multiple write requests from clients to the traversal for diagnosis. Two are built-ificing finds all

distributed file system. In such a case, it is difficult to as-causally related events in a graph aferarchical Ag-

sign a path id to the events inside the call (e.g., ebent gregate summarizes information at an appropriate aggre-

can only share with the path id froeor f, but not both).  gation level.

Two paths might also be correlated when they access the ) ) o

same shared variables. In fact, a more general graph &3 Filter with Slicing

already used to some extent in previous work such agnstead of simply “grepping” runtime information with a
Pip [26]. special tagSlicing filters information using graph struc-
G? instead explores a different point in the designture: it starts from aroot event and transitively col-
space. Rather than constraining users to a path-basegktscausally dependent events. Forward and backward
model a priori, G preserves and presents the full struc-traversal yield dorward slice and abackward slice, re-
ture captured during the execution of a distributed systengpectively.
as a graph. During diagnosis, users can choose to con- Computing precise and complete causal dependen-
struct paths from such a graph if paths are appropriate fogies for slicing is usually too costly if not infeasible,
the diagnosis task at hand, or they can choose to procegghere a reasonable approximation is often sufficient in
information in a different way that is more appropriate practice. A naive way is to consider alke and fall-
for that particular task. &does not make that decision through edges asausal edges. Our practical experience
for users during the modeling phase. This design choic@as shown that fall-through edges often do not imply
effectively shifts the burden to the underlying distriilite causal relations. For example, in a typical implementa-
engine, as it must enable efficient operations on a morgion of message processing subsystem, a thread will con-

complicated graph structure. tinuously accept new incoming messages and call corre-
. sponding message handlers. Fall-through edges between
2.2 Execution Graph two message handler invocations do not represent any

G?'s execution graph model embraces two key conceptsmeaningful causal dependencies. Such false causal de-
causality andaggregation. This is based on our observa- pendencies could render slicing ineffective. All events
tion of common system diagnosis practices: users tenéh the corresponding message handler should however
to (i) follow cause-effect relations to find relevant infor- be considered causally dependent on the message-send
mation and (ii) to summarize runtime information at an event. G introducescausal scope to specify, for each
appropriate aggregation level in a hierarchy in order touse edge, the set of events that are causally dependent on
find trouble spots for further in-depth analysis. the source event of that edge. A causal scope consists of
In an execution graph of Geach runtime event from @ continuous region from the destination event of each
a target system is represented agedex. In Figure 1, use edge: all events within that region are causally de-
events are shown in small rectangles; exampleprang ~ pendent on the source event; all fall-though edges within
log eventb (line 3), asynchronous request define events thatregion are considered causal edges. In Figure 1, large
andd, and request use eveatA context is associated rectangle boxes define causal scopes. The shaded area
with an event, indicating the aggregation units that theoutlines the forward slice from eveat
event belongs to. Multiple levels of aggregation units can
be defined. Examples include static constructs, such a%
modules, classes, and functions, as well as runtime corAggregation is another effective way of managing a large
structs, such as machines, processes, and threads. amount of data, especially with a hierarchy. There are
Runtime events are correlated, where directed edgesatural hierarchies in distributed systems: a program is

4 Summarize with Hierarchical Aggregate



1 class ClientReq { time Slice

2 void OnRecieveClientRequest(...) {

OnReceiveClientRequest
3 Log (LOG_INFO, "..."); P

Causal scope
thread 1

4 IssuePersistRequest(...); } Event
5 int PersistMainThread() { OnRecei !
eceiveClientRequest
3 while (IsEnoughRequest(regs)) s ? Fall-through edge
; OnPersistRequests(regs); thread 2 — id ;\‘ Use edge
9 int OnPersistRequests(list<ClientReq*> reqs) { \\\
10 MemBuf* buf = CreateBuf(reqgs); PersistMainThread \‘\\ OnPersistRequests

11 WriteTolLocalDisk(buf); R
12 ForwardToSecondary (buf, ...); } thread 3 > et D’ ;ei 5;
L) L)

A}

Figure 1: System execution graph, causal scope, and slice.

often made of modules, each module is comprised of

. K Machine 0 [ Primary (440) |
classes, and each class contains a set of functions. A ., ReplicateWiite
distributed-system execution can be aggregated at threadt*"™™ ' e s !
level, then at process level, and further at machine level. wachine 2 [ Secondary 2 (202) |

Time

A distributed system often consists of multiple logical
layers that are application-specific: for example, a sys-
tem behavior can be analyzed at an RPC layer or at aMetwor

lower OS layer with a socket interface. Replication ReplicateWrite (149 WriteRequestFalled (24
G? supports an important notion calléierarchical vo

Time

aggregation. The key idea is to construct a condensed
graph at an appropriate layer of a hierarchy to summarize
system behavior. A continuous segment of events withFigure 2: Hierarchical aggregation for a replication im-
the same aggregation unit in an execution graph is sumplementation. Numbers in rectangles show numbers of
marized and condensed into a single higher-level vertexvents within vertices in the aggregated graphs.
in the resulting graph. &by default attaches signatures
of code and runtime location to all events for aggrega-: Gaph<TV, TE> Slicing (
. . . . . 2 this Vertex<TV, TE> srcVertex,
tion. Aggregation in Gis customizable: a user can lever- ; g ce. Type type):
age her domain knowledge to specify how to aggregate: , ,

. X . . 5 Graph<TH ghV, THi ghE>
events and summarize high-level information (e.9., ag-¢ i erar chi cal Aggregat e (

gregated performance counters) from low-level events. 7 this G aph<TLow/, TLowE> g,
8 Func<Vertex<TLowV, TLowE>, _ out Ul nt64> | abel Cb,

Figure 2 shows an example of event aggregations Func<Vertexlterator<TLow, TLowE>,
when debugging replication in the distributed storage® —out THghV>  AggreFunc);
for SCOPE. Numbers inside rectangles are total event-
counts within corresponding vertices in the aggregated Figure 3: Graph operators.
graphs. An error occurs during a replicated write opera-
tion. The upper part of Figure 2 performs event aggrega-
tion at machine level: it clearly shows whether the write 3-1  Graph Operators

operation was propagated to all replicas. Once a SUSFigure 3 shows the basic graph operators. Evlex

pected machine is identified, a user selects that machingniains its incoming and outgoing edge lists, and it is a

and zooms in to see _how _the writ(_e request was processquneriC type that can be instantiated wiiv, TE). Type

by each component in this machine, shown in the lowery gescribes the data associated with the vertex, such as

part of Figure 2. logs, code locations, and runtime locations, while type
TE describes the data associated with each edge, such as
timestamps for the source and the destination events. A

3 PROGRAMMING IN G2 genericGraph type can be further defined as a collection
of vertices.
Programming in & consists of two parts. One is to “pro- As shown in the figure, operato8licing takes

gram” distributed systems so as to to make them diagsrc\Vertex as the root event andype as the di-

nosable by & We defer this to Section 5. The other is rection (forward or backward) for slicing. Operator
for “programming” queries to be executed oR,&hich  Hierarchical Aggregate condenses a graph to a higher-
is the focus of this section. level graph (line 5). Given a vertex in the original graph,



1 Events
2 .\Were(e => e.Val . Type == Event Type. LOG_ERROR [ Partition ] [ Partition ] [ Partition ]
3 && e. Val . PayLoad. Contai ns("Wite request failed")) | ¥ [ y ]
4 . Slicing(Slice.Backward) Where [ where | [ “where ] [ where ]
5 . Sel ect(e => Consol e. WiteLine(e.Val.PayLoad)); l _______________ l L//_tm
. . Local Graph Local Graph Local Graph
(a) Error log analysis. Slicing Traversal | 7| Traversal || Traversal
1 var req = Events 1 .............. L//—’—i—\J
2 .\Were(e => e. Val . Location. Name=="Subm t WiteReq"); Local Graph Local Gral
A A ph Local Graph
3 req. Slicing(Slice.Forward) Traversal | | Traversal | °| Traversal
4 . Hierarchical Aggregat e( ) ] HierarchicalAggregate 7 7
5 e => e. Val . Process. Machi ne. Si gnature, [ Mapper ] [ m ] 1 |
6 evts => evts. First().Val.Process. Machi ne. Nane) b apper Mapper
7 .Critical Path(req, dst,e=>{e.Val.SrcTs, e.Val.DstTs});
. . . | Reducer | | Reducer |
(b) Machine level critical path analysis. l fffffffffffffff Eni
ngine
Merge
1 var sl = Events.Were(t =>t.VertexlD == 1) g
.Slicing(Slice. Forward) i ”””””””””””””””””””””””””””””””””””””””””
. Hierarchical Aggregate(...aggregate by conmponent...); CriticalPath | | Client

.Slicing(Slice.Forward . . .
Hi erargfﬂ cal Aggr egat e%, .. aggregate by conmponent...): Figure5: Data flow for the machine-level critical-path

s1.Diff(s2, e => {e.Val.SrcTs, e.Val.DstTs}); analysis query in Figure 4 (b)

(c) Component level performance regression analysis.

2
3
4 var s2 = Events.VWere(t =>t.VertexID == 2)
5
6
7

rooted from an error log event. The query first uses
Where in LINQ to locate the error event and then in-
vokesSlicing. The second query aims to find straggler

the labelCb callback returns its aggregation-unit label machines during processing of a request. The query first
The AggreFunC callback aggregates a continuous se calculates the forward slice from the pOint of request
quence of vertices with the same label (line 9) into a ne Submission, aggregates the slice into a machine-level
vertex at the high-level graph (line 10) (Note the structur _graph viaHierarchical Aggregate, and computes the crit-

is determined by & and the associated valdié{ighv)  ical path for request processing. Each vertex in the re-
is defined by the callback). turned critical path summarizes a continuous execution

All those operators are built on top of two dis- ©n & machine with the start and stop times of the execu-

tributed primitives: GraphTraversal and MapReduce.  tion, from which stragglers can be easily identified. The
GraphTraversal starts with a set of vertices in a graph last query intends to find components responsible for an
and traverses the graph by following edges forwardinstance of slower-than-normal request processing. It ex-
backward, or bi-directionally. A user can customize tracts forward slices rooted from the slow request and
graph traversal by deriving a graph traversal class, whiciormal ones, aggregates at the component level, and out-
defines computations on vertices, messages passed aloRgfS differences. If needed, users could drill down into
edges, as well as final output during graph traversaIProm_emat'C components and investigate further at the
MapReduceis standard with a map function and a reducefunction level or lower.

function for aggregation. Details of these distributed

primitives and how they are used to build graph opera4 DISTRIBUTED ENGINE

Figure 4: Sample diagnosis queries.

tors are left to Section 4. A distributed engine is responsible for transforming di-
_ agnosis queries into distributed jobs to be executed on
3.2 Composing Graph Operators the set of machines storing the execution graphs.

Extensibility and composability are two key fea-
tures of & design for programmingSicing and
Hierarchical Aggregate both consume a graph and pro- In G?, events and correlations between events are cap-
duce another, so they can be composed. We further levetured and recorded locally, and transformed into appro-
age the extensibility of the LINQ framework [3] in .Net, priate graph representations? @erefore naturally par-

so that developers can write diagnosis queries using ouitions original system execution graphs based on where
new operators, LINQ’s relational operators, and everevents occur. Such a partitioning method tends to exhibit
customized local analysis modules, such as finding critgood locality as distributed systems are usually designed
ical path CriticalPath) and comparing two aggregated to minimize cross-machine traffic.

graphs Diff). Figure 4 shows a set of examples; all from A job manager initiates ajob when a query is sub-
real diagnosis practice. mitted. Each machine storing graph partitions runs a

The first query returns the logs in a backward slicedaemon. The job manager coordinates executions of

41 Overview



o . S bl e<T> GraphT, | <Tvr ker >
phases by communicating with these daemons. A job. ' S1Yaf aphe<tv, TB o oo g e (

. . g’ .
involves multiple phases that can be represented as a l%eryamdk/ertexajwv TE>> \S&)alr(t VerTU c$§ .
. : tit <1V, ) 1>
data flow graph. Figure 5 shows the data flow graph; L ot Fonver earerv, TE b Vs ¢
for the machine-level critical-path analysis query in Fig- s Vertex<TV, TE> GetLocal Vertex(ID VertexID);
4 (b). It ist f 5 ph - Wh Slici Hi 7 void SendMessage(lD VertexI D, TMsg nsg);

ure ( ). It consists of 5 phases: Vhere, Slicing, Hi- 3 void witeautput (T val);
erarchicalAggregate, Merge, and CriticalPath. The dis-e virtual void Initialize(Vertexlterator<TV, TE>)=0;

H P + virtual void OnMessage(Vertex<TV, TE> TMsg) = O;
tributed engine takes care of the first 4 phases and sends ;1 ua void Final 2e() = O;
the aggregated results to clients for local critical-path: };
gnalysns. The Mgrge phase does n_ot appear in the or_q—a) GraphTraversal interface.
inal query and is added automatically during compi-

i i~ H H i 1 class GPartitionSlicingWrker<TV, TE>
lation. Both Slicing and HierarchicalAggregate involve 2 ¢ GPartitionWerker<TV. TE bool, Vertex<TV, TE>> {
graph traversal, where the latter consumes the graph crer Hashset <I D> Visitedverti ces;
ated by the former and outputs an aggregated graph fof Vvo,d Initi ?{/;fe\(lvlegt Ierfl':g)f ator<Tv, TE> inits) {
client analysis. In particular, the mappers during Hierar-¢ SendMessage(v. 1D, true);

: . . L
c_hlcaIAggregate shuffle the vertices according to wh|ch8 Voi d OnMessage(Vertex<TV, TE> v. bool msg) {
high level vertex they belong to, and the reducers aggre= it (VisitedVertices. Contains(v.ID)) return;

H inci H i 0 VisitedVertices. Add(v.1D);
gate the vertices inside one high level vertex using thé11 Wi teout put (v}

AggreFunc callback provided by the queries. 12 foreach(var e in v.CutEdgelterator)
; 3 if (e.lsCausal())
The part of the data flow graph without graph 14 SendMbssage( e, Dst Ver t exi D, true):

traversal is similar to directed acyclic graphs (DAG) 15 }

in previous data-parallel computation engines, such a& }"0‘ d Finalize() {}

Map/Reduce and Dryad. Graph traversal however re-

quires a different type of coordination to support loops(b) GPartitionSicingWorker for forward slicing.

and barriers. &s graph traversal support distinguishes

itself from previous graph engines (e.g., Pregel [24]) in  Figure6: GraphTraversal interface and example
several noticeable ways. First, for operations such as slic

ing and hierarchical aggregation? Gupports batched

asynchronous iterations, where partitions batch oper
tions locally, but do not have to be synchronized using
barrier in each iteration. Second? @xposes a partition-

awith others after every one hop traversal. When this it-
£ration ends, a partition reports to the job manager with
pointers to lists of vertices to other partitions for funthe

level interface, rather than a vertex-level interface 1o a €xPloration. The job manager will notify other partitions

low better batching and aggregation for graph computa—Of the ayailapility of these lists. .A partition finishing the
tion. This is particularly important for enabling efficient current iteration can fetch the lists of new vertices from

implementation of hierarchical aggregation. These opti-Other partitions and start the next iteration. It does not

mizations can be applied not only t¢®ut also to other have to wait to get lists from all other partitions before
distributed graph traversal problems such as shortest paffitiating the nextiteration.

computation. G? does support global barriers for two cases. In
the first case, completion of a graph-traversal stage is
4.2 Batched Asynchronous|terations through a global barrier: all participants must have com-

pleted their last iteration locally. The job manager initi-
. ates the next phase of computation only after that global

h K . d belief Oharrier is established. In the second case, the job manager
such as page-rank computation and belief propagation.,, periodically introduce a barrier to an ongoing graph-

f"t‘" p?mupgntsl;nus_t syncr(]rpnlze Vr\]”t? eat<_:h omer n i_a(_:r{raversal stage for failure recovery; the barrier is used to
iteration via a barrier, and in each iteration the par 'C"_perform a globally consistent snapshot.

pants can only traverse one hop. Such synchronization is
easily done with the help of a job manager.

In G, we observe that graph traversal for slicing
and hierarchical aggregation is inhererafynchronous. G? provides a GraphTraversal interface so that users can
Take forward slicing for example, each partition has aimplement their own custom graph-traversal algorithms.
set of vertices to start with in each iteration (except thePrevious graph processing systems such as Pregel allow
first one where only one partition has the root vertex).users to specify actions on each vertex, which is natu-
For one local iteration, a partition starts graph explo-ral for a large number of graph computation algorithms.
ration from those vertices following causal edges untilHowever, we have found a partition-level interface offers
it reaches cross-partition edges without synchronizatiomdditional opportunities for better performance.

A typical graph engine implemengynchronous itera-

4.3 Partition vs. Vertex



Graph Traversal Interface. Figure 6 (a) shows the sig- ;%15 (1 fLereLiert sxtieracor tniee) o

nature ofGraphTraversal. It starts from a set of initial s v.Aggld = v.1D; _ _
vertices (line 3), with traversal polices designated by; — "°Gacr (Yertex v, in fetanpout vertices)
TWorker derived fromGPartitionWorker (line 4). When ¢} ...

a graph traversal phase start$, @eates an instance of ! ¢ (O“mwgffgggfvfit SfL‘;beIN)BGrgfﬂan
GPartitionWorker on every graph partition aj (line 2), o if (meg.Aggld < v.Aggld) {

and the job manager coordinates the workers to perforrf 799! ¢ (:nggéA?g' O ected edges)
multiple iterations of computation: a first round fioi- 12 SendMessage(e. Dst VertexI D, nsg);

tialize (line 9), followed by multiple rounds of graph * b

traversal via message exchanges among vertices (line 1%) Vertex oriented implementation.

until all workers reach the completion barrier, and a last
round forFinalize (line 11). In each round, a worker cre- : ,\"ﬁg:: g, :g L’g;&gf/'—\gg?g; H Yg;ggfieggglrd
ates remote messages for other partitions. Those remote vap<i b, 1D[]> Renot eVert exGr oup: / /1 eader - >rverti ces
messages are eventually transported to appropriate partisl- void I l“:)tc;f' ;;gesggg %Ltf;af glft: 2: 72 t{he raps
tions and serve as the input for next-round computations ... send nessages to remote vertices ...

on those partitions. 7}
8 voi d OnMessage(Vertex v, MSG nmsg) {

Forward Slicing. Figure 6 (b) shows a sample that im- ¢ if (msg.Label != v.Label) return;

i H iriali 10 ID leaderld = VertexLeader[v.ID];
plements forward slicing. D_urmgwah_ze, the worker 7 o) dAggl d = Leader Aggl ds| | eader | d] :
sends a message to the initial vertices of the grapk if (msg.Aggld < ol dAggid) {

H ; ihitializa. 13 ... update aggld for the group ...
traversal waSendM_eesage (lines 5,6). After initializa- foreach (var vid in RemteVertexa oupl | eader| d])
tion, each worker invoke®nMessage (line 8) on each s SendMessage(vi d, msg);

message, inside which a worker can read/write partition® ' -

local states (lines 9,10), produces partial outputs via(b) Partition oriented implementation.
WriteOutput (line 11), and send messages to other ver-

tices viaSendMessage (line 14) by following the edges  Figure 7: Optimization forHierarchical Aggregate.
of the current vertex (line 12PnMessage doesnot cause
a real network message to be sent: for a local destination,
the worker again applie®nMessage on the destination jts ownAggld and propagates the change to its neighbors
vertex in the current round. Only messages destined t@lines 9-12). The traversal ends when all vertices are as-
a remote partition are gathered and made available tgigned the smallest label of the vertices to be aggregated
other partitions at the end of this iteration. After a worker together.
completes the current round, it fetches the available re- Figure 7 (b) shows a partition-oriented implementa-
mote messages for its partition from other partitions, andjon where partition-level aggregated states are main-
starts a new round. This process ends when all workergined (lines 1-3) and initialized (lines 5-6). These data
have completed the current rounds with no new remot&yyyctures essentially aggregate local continuous seg-
messages. In the final round, the workers invBk®lize  qents with the same labels and update them as a sin-
(line 16), which usually produces outputs of this traver-gje unit during traversal, rather than going through each
sal phase from final local states. It is empty in this casg,grtex repeatedly: each local continuous segment with
because output is generated during traversal (line 11). the same label is assigned a leader. Rather than having
Hierarchical Aggregation. The value of exposing a each vertex maintaining aaggld, the partition main-
partition-oriented interface is more evident in the imple-tains a mapping from leadersagglds in Leader Agglds.
mentation oHierarchical Aggregate. Because vertices with the same leader always have the
Figure 7 (a) shows a simple vertex-oriented imple-sameaggld, a partition can simply update one entry
mentation from a vertex’s perspective. Each vertex hasn LeaderAgglds for all those vertices when thaggld
a label based on its context; for example, the label is itxhanges for any of the vertices. Similarly, destination
process id for process-level aggregation. We Aggld  vertices of cross-partition edges from this segment of
to identify a set of vertices that have already been aggrevertices are recorded RemoteVertexGroup and can be
gated together: those vertices will have the same valu@entified without following the edges within this seg-
v.Aggld. Every vertex uses its owlD as the initialAggld ~ ment repeatedly. Those data structures are populated dur-
(line 3), and broadcasts both its label afggld to its  ing initialization. When a message arrives at a partition
neighbors (lines 4,5). A message is ignored when a rewith a boundary vertex as the destination vertex, the
ceiving vertex has a different label (line 8), indicating worker checks its label (line 9), and updates Auggld
a boundary of aggregation. Otherwise, if an incomingof the corresponding leader vertex if it receives a smaller
Aggld is smaller than the current one, a vertex change#\ggld (lines 10-13). Finally, it broadcasts the n&ggld



Component Name Language| LOC(K) manual code change depends on the types of edges to

Annotation Library C++,C 3.4 be captured. We have developed a Phoenix [5] based
Binary Rewriter C++/CLI | 1.6 binary rewriter tool to annotatsynchronous use edges
Transformer C++ 15 (i.e., call) and their corresponding causal scopes (he., t
Engine(JobMgr,Daemon,MetaSvf) C++ 27.5 call boundary) automatically. A user can choose what
FrontEnd(Compiler, JobClient) | C# 17.3 to instrument with a configuration file, reflecting her
VS AddIn(Wizards, Ul) C# 57.8 .

Total - 1091 choice to balance between cost and coveradeal§o

capturesync edges automatically at the Win32 layer by
instrumenting Windows synchronization APIs. Fagyn-
Table 1: Components in & chronous use edges, G provides an annotation library;
the following code illustrates how to track network mes-
sages and their corresponding handlers using this library.
Users first annotate a conteXgtworkMsg) by making
it inherit a G2::Causal Ctx object. Users then add a call
to LogUseEdgeBegin andLogCausal Scope respectively,
G? supports iterative graph computation, which rendersyhen this context is about to be delivered and used. The
inapplicable the map/reduce type of failure recovery usmacro call ofLogCausalScope is a C++ object, whose
ing re-computation. In a synchronous graph computatifetime defines a causal scope.
tion model, where a global barrier is established at each _
. . 1 class NetworkMsg : public Q::Causal Ctx {

round, a globally consistent checkpoint can be taken at, ~ i n¢ send(. . .)
each barrier. When failures happen, computation can be LogUseEdgeBegi n(this, ...);
rolled back to the most recent checkpoinf.alows each 2 Yo
partition to maintain states. A checkpoint therefore cov- 6 voi d RecvNet wor kvessage (NetworkMsg& nsg, ...) {

. 7 LogCausal Scope(nsg);
ers such per-partition state, as well as the remote mes;  ngg. Execute(. . .);
sages that each partition generates at the end of a round - }
for other partitions. Appropriate levels of redundanc'eSStoreGraph. We developed aransformer that converts

might be needed _for ch_eckpomts in order to recoverfromraw runtime-event streams to database tabl@stares
permanent machine failures.

With an asynchronous graph computation moddl, G a system execution graph in four relational tables. Each

. : .’ = object has a unique key, which we use as reference keys
can choose to insert a global barrier at an appropriate in- ) q Y y

. . across tables and partitions. T@edel ocation provides
terval for consistent checkpointing. We can also reso P P

rE . .

X . he context for each event and in particular the compo-
to the standard Chandy-Lamport algorithm fqr taking ‘f." ent, class, function, file, and Iinepnumber of the start)e-
Fhent that generates the event. Rrecessinfo table cov-

simple (yet less efficient) implementation for this algo- : . . .
: ers the runtime process information, such as process id,
rithm. In the worst case, &can always roll back to re- . .

machine name, process start time, and so on.Eueat

execute a graph-traver_sal pha.se. (assumln.g that fa}'lur%gble contains information about each event, including
do notlead to data loss in the original graph information).. s .
its type, a reference to an edge if it is an endpoint of that

Our current implementation uses global barriers for con-

sistent checkpointing, but do not replicate the checkpoin?dge’ a physical timestamp, referenceé:weLocanon
) and Processinfo, and payload (e.gprintf log content).
to tolerate permanent failures.

TheEdgetable contains the edge type, a unique edge ID,
5 | and references to the source and destination events. The
MPLEMENTATION Edgetable defines thetructure plane of a system execu-
G? provides a complete tool set to help developers diagtion graph, while the other three form tdata plane. A
nose systems. Table 1 shows the programming languagsgicing operation can be done purely on tbdge table,
and lines of code for components of:Gannotation li-  but for event aggregation it is often necessary to query
brary and binary rewriter are used to capture system exthe CodelLocation and Processinfo tables. TheEdge ta-
ecution graphs. Transformer is used to store a graph. Erble is frequently accessed during graph traversal and is
gine, Front-End, and Visual Studio AddIn are for pro- therefore cached in memory for fast access.
cessing and visualizing a graph. Process Graph. Queries submitted to ©Gare compiled
Capture Graph. G? can use existing traces from pre- into a distributed query plan, with appropriate resource
vious work, e.g., those on path-based analysis, to buildiles dispatched to workers running on machines manag-
execution graphs. It also provides its own tool chain foring partitions of a graph. Execution of a query plan is
developers to instrument target systems for gathering indone through coordination between the job manager and
formation of interest. Whether instrumentation requiresthe workers, as described in Section 4. The job manager

to its cross-partition neighbors (lines 14-15).

4.4 FailureHandling



Systems Acs# | Ace# | Func# | Rule# CreateProcess function to create a new process, bypass-

G 9 11 197 10 ing the middleware component that we annotated. Such
SCOPE/ Dr yad 17 13 730 5 cases are rare and can often be discovered during a di-
Ber kel eyDB 2 2] 1542 23 agnosis process. Developers can optionally capture other

dependencies: we do not model those.
Table 2: Instrumentation statisticsAcs#, Ace#, Func#,  Runtime overhead. Runtime overhead for emitting
and Rule# refer to the number of manually annotated events and edges is comparable to those in previous work
causal scopes, manually annotated edges, instrumentgg capturing causal dependencies [14, 7, 13, 8, 19, 26,
functions, and rules in the configuration files for the bi- 18 27]. There are several categories of events/edges.
nary rewriter, respectively. The first category are asynchronous use edges and
the corresponding causal-scope events (e.g., message

. s send/receive), which are always captured. The second are
monitors progress of graph traversal and assists in mes-

sage exchanges between workers. After a round of loca{fzgacyprmtf logs. These two parts do not mt_roduce no-
) - Iceable system slowdown compared to previous systems
processing ends on a partitidnthe worker forA groups

messages based on their destinations and notifies the jéﬁ'th the samarintf logs). The third are events from in-

manager of the list of partitions with data frofnThe job umented funct!ons:, and the costis proportional to the
. . o . numbers of function invocations that are captured. Usu-
manager piggybacks the list partitions with data ready for

A The worker forA will then fetch those from the corre- ally invocations of interface functions of each component

tthat are associated with error and failure handling are

sponding workers. To make message exchange efflC'ene’nough for diagnosis. For our experiments on the three

workers cache generated message groups in memory arcljd

i 0, -
discard them after they are fetched. The job manager I§|str_|buted §ystems, only Ies§ than 0.1% of ov.eraII func
. ; . lon invocations are captured in system execution graphs,
also responsible for enforcing global barriers upon com-

. . z%nd no noticeable overhead was observed. If more func-
pletion of graph traversal, as well as to create con5|sten[ :
. lons need to be instrumented, and we cannot afford to
checkpoints. . . )
instrument all, we can turn to dynamic instrumentation
6 EXPERIMENTS AND EXPERIENCE techniques as done in our previous work [23]. .
Table 3 reports the statistics on sample execution
We have applied &to SCOPE/Dryad, &itself, and  graphs from our target systems. Thé @ata include
BerkeleyDB. Our evaluation attempts to answer the fol-events from executing tens of diagnosis queries against a
lowing questions: a) what is the cost of applying?G SCOPE/Dryad snapshot. The SCOPE/Dryad data came
b) how does the &engine perform on real execution from ten SCOPE queries for calculating different statis-
graphs? c) does Ghelp developers diagnose compli- tics of web data. The BerkeleyDB data was collected dur-
cated distributed system problems? ing approximately one hundred instances of system ini-
Target systems are co-deployed with @ a cluster tialization guided by a model checker; the goal is to use
of 60 machines; each has a dual 2GHz Intel Xeon CPU? to assist model checking research in another project.
8 GB memory, two 1TB SATA disks, and are connectedAll numbers reported are per-machine averages. For ex-

with 1 Gb Ethernet. ample, for SCOPE/Dryad, a 120-minute trace generates
_ 5 about 1.2GB of & data on each of the 60 machines.
6.1 Cost of Applying G On average, the imposed 1/O bandwidth ranges from

Human effort. Table 2 reports the statistics about the 89-3 KB/s ((%2) to 174 KB/s (SCOPE/Dryad) on aver-

annotation effort to apply &on these systems. For in- 29€; which did not cause noticeable runtime interference
strumenting functions, users write only a configurationt© the host systems. Not reported in this flgure,om our
file for the binary rewriter to specify names of functions S@mple SCOPE/Dryad execution graph, about 28% of the

they are interested in. For all three cases, the configurs2Vents recorded are legacy logs (category 2), which ac-
tion files are less than 25 lines, as shown in Table 2. count for 64% of total sizes. Category 1 accounts for 33%

The asynchronoususe edges and correspondent by countand 16% by size, while category 3 takes the rest.

causal scopes require manual annotation on source codg. .
Our experiences show that most asynchronous messaggg Per formance Evaluation

and events are handled by a small number of compoThis section evaluates the performance éfe@gine.

nents or by a middleware library, making annotationGraph statistics. Table 3 shows the numbers of edges
easy. We annotated fewer than 20 places for each benchnd vertices for the sample execution graphs from our
mark. Annotations on &took us less than one hour. In- target systems. The number of edges is far fewer than the
terestingly, in our SCOPE/Dryad experiment, we did for-number of events because all fall-through edges are im-
get to annotate a place where the code directly uses thaicit. The func# is the number of invocations for instru-



Systems LOC(K) Func# Edge# Event# | Raw(MB) | DB(MB) | Time(min) | node#
G 27 267,728 634,704| 1,212,778 85 231 17 60
SCOPE/ Dr yad 1,577 | 3,128,105| 8,964,168 20,106,457 1,226 3,269 120 60
Ber kel eyDB 172 46,164 92,502 186,597 14 29 2 3
Table 3: Execution graph statistics about a snapshot for the taygtéms.
mented functions as specified in Table 2. System exect 3% T~
tion graphs can be large: the SCOPE/Dryad snapshot h % 250 ! \
on average more than 20 million events on each machin g 200 - }
The database size (DB) is approximately three times th 3 150
raw event stream size (Raw), due to verbose DB datafo £ ;o0
mat (factor of 1.5) and associated indices. &tige table ‘é" 50 |
(including its indices) counts for only 30% of the total 2 o po 3 nae
database size. Because it is frequently accessed, cach LES00 L E+02 LEs04 LE+06 LEs08
it in memory makes sense. # of Events

End to end performance. We evaluate the end to end
performance of & with 5770 random queries on the
SCOPE/Dryad graph. Each query calculates a forward

Figure 8: Process level aggregation performance.

100 + - 100

slice from a randomly selected root event and then con § so | - # of tvents s -~ B
putes a process-level aggregation on the slice. Figure £ jg | 77 #of Local Edges [ jg 3
shows the overall running time of these queries with al £ 5 | ~ *cffemowetdees e E
optimizations turned-on. The?Gngine is generally fast £ 50 | L ' 50 §n
on these queries: 94.5% queries finished within 5 sec § 5o | 2
onds, with only three queries (in the upper-right circle) 5 20 Y sl F20 §
taking more than 100 seconds. Our investigation show g 0 | """~ . . S
= 00:17 00:35 00:52

that the randomly chosen root events for those thre
queries are close to the entry point of the Dryad job,

yielding huge slices with up to 130 millions of events.

Running time depends not only on the sizes of resulting 19Ure 9: How the # of events, local edges, and remote

slices, but also on properties of the graph (and its par€dges vary along the execution time.

titions), those properties dictating concurrency of query

processing. For example, some queries (in the circle Or'Potal I/0 are small. This is reflected in the flat start in the

the left) take more than 50 seconds, even though the cot: ;
) } . o igure. Graph traversal experiences respectable concur-
responding slices are relatively small. This is because

thev experience a period of ime with low concurrency. €N¢Y in the middle range when traversing the portion of
yexp P Y the graph for the real Dryad execution. Then after around

We also inspected the result of hierarchical aggretime 00:40 it starts to process the portion of the graph
gation. The result shows that it is effective in simpli- corresponding to the final phase, in which a job manager
fying graphs. All resulting process-level graphs containagain has to talk to many machines to fetch statistics and
less than 85 vertices, except the three queries in the URp write them into a distributed file. The overall concur-
per right circle: the aggregation yields graphs with only rency level on 60 machines is 7.23.

0.01% of vertices. Effectiveness of graph engine optimizations. To eval-
Graph and graph computation characteristics. We  uate the effectiveness of batched asynchronous itera-
recorded and examined a large forward-slice computation and partition-oriented interface design, we mea-
tion on the SCOPE/Dryad graph. Figure 9 shows how thesured bothSlicing and Hierarchical Aggregate perfor-
numbers of events, local edges, and remote edges vargance with nine different configurations, which are the
over time. The SCOPE/Dryad job has a bootstrap phase&ombinations of two dimensions of configurations. The
during which a job scheduler copies resource files befirst is whether to enabl8arriers among workers and
tween machines. In the actual execution, this phase takeSheckpointing after each rountlidne, B, or B/C). The
little time. However, because this phase involves a seriesecond is to choose which local graph traversal policy
of communication, slicing at this segment of the execu-(OneHop, Batched, or Partition). OneHop s to allow one
tion graph has little concurrency. It takes a relativelygon hop traversal only in each round, a typical setting for
time to process even though the number of events and thather graph engines such as Predgdtched is to tra-

00:00 01:09

Elapsed Time (mm:ss)
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Phase | OneHop | Batched| Partition Scaling performance. We evaluated scaling perfor-

Slicing(None) 1.49 0.99 1.00 mance from two perspectives. The first is to measure
Slicing(B) 2.70 1.19 121 scaling in terms of the number of machines. We do not
Slicing(B/C) 2.86 1.27 1.27 show figures due to space constraints. We observe that
Aggregation(None)  1.80 1.48 1.00 the job latency decreases almost linearly initially when
Aggregation(B) 2.67 191 1.01 more machines are used. But after we have more than 16
Aggregation(B/C) 3.40 2.42 1.09

machines, the speedup slows down due to inherent limit

) . L on concurrency. With 60 machines, the average latency
Table 4: Relative execution time for the component level is reduced to under 3 minutes from over 14 minutes on 8

aggregation analysis with nine different configurations. .
- : machines.
Abbreviations: B - barriers are enabled among workers; . L
The second is to measure scaling in terms of the num-

BIC - barriers are enabled among workers, and partitiorber of concurrent queries. We use two different sets of

state is checkpointed. slices for those queries. The first set has several large
slices, which involves 5 to 8 graph partitions and con-

verse until no further local vertices to be visited during t&ins approximately 0.4 to 1 million events. The second
this round: andPartition is similar to the second, but Set has a set of randomly selected slices, which typically
with the partition-state optimization discussed in Sec-nvolves 1 to 2 machines and contains several thousands
tion 4.3, enabled by &s partition-oriented interface. Ta- of events. For large sllces_, latency increases dramaticall
ble 4 shows the average relative execution time for theVhen we reach 100 queries. For small slices, the system
component level aggregation analysis for a Dryad job®@n sgpport almost SQO queries simultaneously Wlthqut
with the nine configurations; each runs ten times. To beaffécting query latencies and can handle 5,000 queries
fair, with (OneHop, B/C), we checkpoint every 7 and 18 With an average latency under 3 minutes.
rounds for slicing and aggregation, respectively, so tha
they take approximately the same number of checkpoint:
as in other configurations. To make G accessible to developers, we have built a set
Overall, batched asynchronous iterations andoftemplates to guide the use of the system and integrated
partition-oriented interface are effective: without ckec the tool into Visual Studio for a seamless debugging ex-
pointing, we see a 62-63% reduction in latency for bothperience. Thé&jisual Studio Addin includes a set of com-
slicing (2.70 vs. 1) and hierarchical aggregation (2.67mon diagnosis tools based oR,@cluding event naviga-
vs. 1). The data also reveal the following: (i) Batchedtion along edges in all levels of graphs (caltpealker),
asynchronous iterations bring benefits in two ways:as well as a set of wizards focusing on specific visual-
First, it allows local traversal to proceed (asHatched) ized diagnosis tasks, such as error log analysis, critical
and significantly reduces the number of global roundsath analysis, and performance regression analysis, as
(from 208 rounds to 28 rounds for Slicing and from discussed in Section 3.2. Following are two showcases
111 rounds to 6 rounds for hierarchical aggregation)from our experiences.
Second, it removes the need for global barriers. This iSlower job. When developing & we found that query
particularly effective when there are many rounds andprocessing time became 60 times slower after minor code
significant variations across machines in each round. Ithanges. To investigate, we applied ®r a machine-
is noticeably ineffective for AggregatioriRartition, B), level aggregation with critical-path analysis on a forward
(Partition,None)) because our partition-oriented op- slice of a query job. The result showed that most of the
timization makes process-time variations betweerprocessing time was spent on machérgsi-10. We then
partitions negligible. (ii) Partition-oriented interla@and  zoomed into a thread-level execution graph, and per-
data structures are effective for Aggregation (with 32%formed a graph diff with its counterpart from the same
reduction) because we are seeing large local islandaun in the previous day (before code changes were ap-
(e.g., one island with 7.7 million internal edges andplied). Figure 10 depicts the diff result, which shows that
only 2,895 remote edges): those local islands do nothread 8772 has the largest deviation between the two
have to be visited repeatedly with our optimization. (iii) jobs in terms of execution time. We further zoomed into
Overhead of checkpointing depends on how frequenthe component level and then function level execution
we checkpoint and how much data we checkpointgraphs inthatthread, and found that the largest deviation
OneHop introduces lower overhead (5.11 MB/s) becaus@appened in thAcquireRowBYyld function which reads a
it checkpoints the same amount of state in a longer timeow from a local table using the primary key. Our further
period compared to Batched (7.18 MB/s), and Batchednvestigation revealed that the table did not have a proper
has higher overhead compared to Partition because iisdex, the result of a bug we introduced in Transformer
state size is larger than that under Partition (5.96 MB/s).that caused index creation to fail. This kind of perfor-

.3 Experience, Limitations and Future Work
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+3.00%(0.002%)

TID 3912 spawn<M::RUW -4.68%(0.000%) [+20.28%(

TID 4136 Spawn<ConvertVertex::Run>
Spawn<LocalSchedler::RunWorkers> +377.85%(0.014%)

TID 6056 -43.86%(0.000%)

TID 7832 |Spawn<CTpeeadPool::DoWork> Spawn<DbQueryVertex:

TID 8444 otify

Thread

Figure 10: Thread level performance regression diff.

mance regression problem is common in our experienceslicing (at a specific layer), aggregation, and relational
and a hierarchical diff analysis between two similar tasksqueries in G, and is guided with human expert knowl-
is often effective in identifying root causes. edge. It is worth pointing out that%G as any diagno-
Failed write. We have used &to investigate root causes Sis tool, is not intended to replace human completely.
of error logs in SCOPE/Dryad. One case is shown in Fig-Rather, its value lies in its ability to allow users to find
ure 11. The error log in the underlying distributed storagethe right information efficiently.
system reported that a write request to a chunk sexver
at time 21:27 failed. Using & we managed to find its ! mMplicit dependencies. The backward slice in step 1 of
root cause through several Steps' marked in Figure 11. the Failed Write diagnosis did not contain all the interest-
1. We computed a backward slice starting from thelNd event_s forus to find the root_cause, due to implicit de-
error log entry and listed the warning and error entrieso‘znOler_“"_eS (through chumk which are not captured by
ordered by timeQrderBy). A warning log entry showed G*. This is a common limitation in causality-based ap-
up in the disk 10 module, indicating that a chunkvas ~ Proaches. We managed to connect the dots through a re-
marked as deleted. However, we were not able to figurdational query in this case. In our performance diagnosis

out why this happened based on the information in thi€xPerience, we also found a lot of problems caused by re-
backward slice. source contention or interference, and again such causal

2. We wrote aWhere query for the most recent logs relations are not mpdeled by’An the fu_ture, we.plan 0
on the same machine who contain keyword “chutik mcorporate some interference anegS|s techniques (e.g.,
trying to connect the missing edges which may tell Why[25]) to introduceinterference edgesinto our model.
chunkx was marked as deleted. The query returned an-
eventB indicating that at time 21:17 a background thread
marked this chunk as deleted.

3. We usegwalker to navigate the logs on the graph
from eventB, and found an ever indicating that the

ustomized slicing computation. We found some slices
were fairly large and took a long time to compute. In
many cases, users do not need all the information in a
slice. To better control the cost2@rovides three addi-
~ tional parameters to tHaicing operator: maximum slice
meta serveml sent a delete request be_cause "t radius (hops starting from the root event), maximum net-
found that chunk no "?”Qer belonge.d to any file stream. work hops, and a customizable edge filter which decides
4. To locate the origin of the write requestéd on  \yhether the computation should continue following this
presumably deleted chunk we aggregated the back- ¢qge for a bigger slice. Our experience shows these pa-
qud slice rooted at eveAtat process level and found the 5 meters can greatly improve the productivity, especially
write request came fro8, and propagated g2, where  \yhen people are familiar with their target systems.
cl, c2, and c3 formed a replication group oA further
drill-down of the |OgS orc3 showed that3 restarted at Dep|oyment and interference. The data p|acement has
21:27. During its replication log replay, it found an in- three reasonable choices as we see: data on each ma-
complete local chunkand issued an empty write request chine, on one dedicated machine per pod (in which the
to sync data from other replicasl(andc?). machines share a same uplink), and on a single machine.
5. Trying to understand whg3 did not receive the We did not run the second option (in a real data center)
delete request from meta server for chugkve ran a  yet, and our scalability study above touched on diagno-
process level aggregation on the forward slice from evensis performance vs. number of machines. Our belief is
C, and found thatl sent a delete request &8 at time  that the second option is more suitable for a real deploy-
21:25, butc3 was not online at that time. This revealed ment to minimize interference, while the other two can
the root cause. be used in testing environments depending on the size of
This interactive diagnosis process involved gwalker,the setup.
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Figure11: Diagnosis process for the failed-write scenario.
7 RELATED WORK a machine-learning approach [29] involves sufficient art

] o to ensure accuracy, while recovering information using
The design of & draw inspirations from a great nUM- ¢qnsiraint solving [31] faces scalability challenges.
ber of previous works. We discuss those in three cat- slicing concept is inspired by program slic-

egories: execution _modeh_ng, distributed execution €Ning [6] in program analysis. Hierarchical aggregation is
gine/storage, and diagnosis platform. related to hierarchical dynamic slicing [28], although
Execution Modeling. G? captures overall system behav- the underlying techniques are different. Program slic-
ior in a system execution graph with the help of anno-ing captures fine-grain data/control dependencies among
tation and instrumentation. It is clearly related to path-variables/statements, and semantic hierarchy inside pro-
based analysis [14, 13, 26, 7, 8, 27], where a path igrams, while G captures dependencies at a coarse gran-
often defined as a sequence of events that is triggereglarity and resorts to approximation for scalability.
by a client request. Path instances can either be cobjstributed Execution Engine and Storage. G2 hinges
lected through annotation [14, 13, 26] and schemas [8bn its graph traversal engine to operate on huge execu-
provided by developers, or statistically inferred from tion graphs, often composed of millions even billions
inter-machine communications [7]. A variety of analy- of vertices. Pregel [24] is a system for general large-
sis can be enabled on path instances. For example, Magcale graph processing. Tailored for execution graphs and
pie [8] aims to analyze workload models from path in- graph traversal, &adopts a batched asynchronous model
stances; PinPoint [14, 13] uses statistical methods t@ather than a bulk synchronous model in Pregel; it ex-
find components that are highly correlated to failed re-poses a partition-oriented interface, rather than a vertex
quests; Pip [26] checks these instances against specificgriented one in Pregel.
tions of expected system behavior defined by users. Path  Other distributed computing engines have also been
instances correspond to forward slices from the pointgpplied to specific computation on large graphs. Dis-
where client requests are submitted in a system execuributed execution engines such as MapReduce [16] and
tion graph—G’s model is general in that slicing can Dryad/DryadLINQ [22, 30] have been applied to com-
be in both directions from any point. Technically, path- pute PageRank [4] on a web graph. Recently, MapRe-
based techniques [14, 13, 26, 7, 8, 19] could be applieduce Online [15] is also used for interactive big data
on these forward slices and therefore integrated irfto G analysis. G also leverageMapReduce as the basic con-
We plan to investigate this feasibility in the future. X- struction primitive to implement the diagnosis operators.
Trace [19, 18] is similar to &as it captures system be- Besides, it employs dedicated graph traversal primitive
havior as task trees, and it tends to store the informatiofp reduce the query latency2Gartitions a graph into
in a service like OpenDHT to allow further distributed partitions and stores partitions on different machines.
processing. Distributed storage systems, such as key/value stores
A large body of work focuses on diagnosing dis- or table-based stores, have been studies extensively, al-
tributed systems using purely legacy logs. For examplethough not for storing large graphs in particular. Re-
Wei et al. [29] use machine learning to mine console logscent examples include Cassandra [1], Dynamo [17], and
to detect large-scale system problems, and SherlLog [31BigTable [12]. G adopts the similar approach, and it co-
uses a constraint solver with information from a log to locates the execution to the partitions so as to reduce the
rebuild system execution flow that produces the sametorage access latency.
log. While no annotation or schema input from usersDiagnosis Platform. Several previous diagnosis tools
are needed in those systems, there is usually a trade offiave also leveraged the power of distributed systems.
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Cloud9 [10] has pioneered the concepttedting as a
service. In particular, it shows a symbolic execution test-
ing engine that can be parallelized in a cloud. We share
the same vision and believe?®an enable diagnosis as [12]
a service. Wei et al. [29] parallelized their algorithm for
learning legacy logs on Amazon EC2 with Hadoop [21].

Dapper [27] is a tracing framework designed for low [13]
overhead, application transparency, and ubiquitous de-
ployment. Trace data are organized in a Dapper tracE 4
tree, where each node represents a basic unit of wor
called a span. Each trace is stored in BigTable. It also of-
fers a programmatic API, as well as an annotation API[15]
Due to its more restricted trace-tree model, it does not
support graph-traversal or any of the operators 1 G [16]
DTrace [9] is another tracing framework that supports
on-demand instrumentation of distributed systems. It allt?
lows customized predicates and aggregation functions
via a scripting language. The aggregation is applied to
a set of flat trace records, which is different from &  [18]
the later applies aggregation to a graph.

(11]

(19]
8 CONCLUDING REMARKS

Execution graphs capture runtime behavior of distributed20]
system executions. These graphs are unique in their value
for distributed-system diagnosis and in their distinctly
different characteristics compared to well-known social
and web graphs. &makes those graphs useful with new [22]
graph operators and with query support, and makes graph
processing efficient with a distributed engine. By doing,3
so, @ becomes an effective tool for distributed-system
diagnosis and at the same time advances the state of art
in distributed large-scale graph processing. [24]
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