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ABSTRACT

G2 is a graph processing system for diagnosing dis-
tributed systems. It works on execution graphs that
model runtime events and their correlations in distributed
systems. In G2, a diagnosis process involves a series of
queries, expressed in a high-level declarative language
that supports both relational and graph-based operators.
Each query is compiled into a distributed execution. G2’s
execution engine supports both parallel relational data
processing and iterative graph traversal.

Execution graphs in G2 tend to have long paths and
are in structure distinctly different from other large-
scale graphs, such as social or web graphs. Tailored
for execution graphs and graph traversal operations on
those graphs, G2’s graph engine distinguishes itself by
embracingbatched asynchronous iterations that allows
for better parallelism without barriers, and by enabling
partition-level states and aggregation.

We have applied G2 to diagnosis of distributed sys-
tems such as Berkeley DB, SCOPE/Dryad, and G2 itself
to validate its effectiveness. When co-deployed on a 60-
machine cluster, G2’s execution engine can handle exe-
cution graphs with millions of vertices and edges; for in-
stance, using a query in G2, we traverse, filter, and sum-
marize a 130 million-vertex graph into a 12 thousand-
vertex graph within 268 seconds on 60 machines. The
use of an asynchronous model and a partition-level in-
terface delivered a 66% reduction in response time when
applied to queries in our diagnosis tasks.

1 INTRODUCTION

Distributed applications in data centers are increasingly
important as they power large-scale web and cloud ser-
vices. Often, the execution of such an application in-
volves a large number of cooperating processes running
on different machines, spanning multiple software mod-
ules and layers, tolerating and recovering from various
machine failures and network disruptions. Increases in
both the scale and complexity of such systems have made
it difficult to understand and diagnose their runtime (mis-
)behavior.

Typical diagnosis tasks start with observing misbe-
havior or anomaly, navigating through runtime informa-
tion such as logs to find relevant information, and pro-
cessing the information to infer root causes. For example,
starting with a log entry with an error message, diagnosis
could find all relevant log entries to infer the root cause

for the error. As another example, given two similar jobs
that noticeably perform differently, diagnosis could ex-
tract related runtime information to identify major differ-
ences. Also, it might be difficult to spot problems from a
large number of low-level runtime events. A useful prac-
tice is to aggregate performance information at an appro-
priate layer, identify which aggregated component in that
layer is problematic, and then drill down into the next
layer of details in an iterative process.

Effective diagnosis depends heavily on the ability
to correlate runtime events and to leverage these corre-
lations. Previous work, especially those on path-based
analysis [14, 7, 13, 8, 19, 26, 18, 27], has largely ad-
dressed the important problem of generating and cor-
relating runtime information from executions of a dis-
tributed system. Often the difficulty for diagnosis is not
due to lack of information, but due to the inability to nav-
igate through and process a sea of information to find out
what is relevant.

In this paper, we propose G2, a distributed graph pro-
cessing system for storing runtime information of dis-
tributed systems and for processing queries on such in-
formation. Runtime information is organized as a graph,
where vertices correspond to events and edges corre-
spond to correlations between events. Diagnosis then in-
volves an iterative process of writing queries against the
graph and analyzing the results of those queries. G2 pro-
vides a declarative language that supports relational and
graph operators that operate on the graph structure. For
example, given an error log entrye, a G2 query can be is-
sued to find all events (vertices) that vertexe is causally
dependent on, where causal dependencies are captured
by certain types of edges. This query uses aslicing oper-
ator that G2 provides. From a starting vertexv, forward
slicing finds all vertices that causally and transitively de-
pend onv, while backward slicing finds all vertices that
v is dependent on.

Graph aggregation and summarization are another ef-
fective way of reducing the amount of information to be
examined during diagnosis. In an execution graph, each
vertex is associated with a context that indicates the ag-
gregation units that the event belongs to. Examples of ag-
gregation units include static ones such as components,
classes, and functions, as well as dynamic ones such as
machines, processes, and threads. A G2 query can ag-
gregate information at an appropriate level. For example,
to compare executions of two jobs, a query can compute



the forward slices from the starting points of two jobs. To
make comparison easier, the query can continue to com-
pute a machine-level aggregation from the two slices.
This requires ahierarchical aggregation graph operator
that transforms an input graph into a smaller one: it con-
denses each continuous segment of events with the same
aggregation unit (e.g., machine) to create a single super-
node and applies an aggregation function on those events
to compute the an associated aggregated value.

Distributed query execution in G2 is supported by a
distributed storage and execution system that addresses
the challenges of storing and processing large execution
graphs with millions or even billions of vertices effi-
ciently. In G2, events and correlations are captured on
local machines as they occur during system execution,
leading to a natural partitioning of an execution graph.

G2’s execution engine is tailored for execution graphs
that exhibit significantly different characteristics from
other large graphs, such as social and web graphs. Ex-
ecution graphs tend to have long paths corresponding to
events along a logically related progression of execution,
where social and web graphs have relatively small diam-
eters. Graph operations on execution graphs are often in
the form of graph traversal, which is again different from
iterative graph operations that must proceed in globally
synchronized rounds, such as in page-rank computation
for example. Consequently, G2 embracesbatched asyn-
chronous iterations, where processing on each partition
is batched, but does not have to proceed synchronously
in lock steps. Both slicing and hierarchical aggregation
fall into this model that allows for improved parallelism
and efficiency than the bulk synchronous computation
model in previous work, such as in Pregel [24]. Barri-
ers are used only at the end of graph traversal or to create
global consistent checkpoints for failure recovery. Fur-
thermore, partitions tend to contain longlocal paths be-
fore those paths connect to vertices on other partitions
due to cross-machine communication. Graph traversal
within each partition is therefore significant to the overall
graph traversal performance. Instead of a vertex-oriented
interface, G2 exposes a partition-oriented interface that
allows partition-level aggregation states to be maintained
in an appropriate data structure. This is particularly valu-
able for hierarchical aggregation, where the choice of
partition-level data structure significantly influences per-
formance.

We have built a prototype and applied it to a
set of distributed systems, including Berkeley DB [2],
SCOPE/Dryad [11, 22], and G2 itself. Berkeley DB is a
replicated distributed key-value database that can be eas-
ily linked with applications. SCOPE/Dryad is a produc-
tion data intensive computation system, which includes
a distributed file system, a distributed execution engine
(Dryad), and a declarative query language (SCOPE). G2

is shown to be effective in diagnosis: for instance, us-
ing a query in G2, we traverse, filter, and summarize a
130 million-vertex graph into a 12 thousand-vertex graph
within 268 seconds on 60 machines. The optimizations
we introduce into G2’s execution engine are effective: the
use of asynchronous model and partition-level interface
delivered up to a factor of 3 performance improvement
when applied to graph operators in our diagnosis tasks.
We have also studied scalability of G2 and the check-
pointing overhead introduced to enable failure recovery.

The contribution of G2 is two-fold. First, as a tool,
G2 enables efficient distributed-system diagnosis by al-
lowing users to write declarative queries with both rela-
tional and graph operators, and by providing a distributed
engine that executes those queries efficiently. Second, as
a distributed system, G2’s execution engine targets a dif-
ferent type of graphs with different structural characteris-
tics and with different type of graph operations. It allows
a batched asynchronous graph computation model and a
partition-level interface, which have contributed signifi-
cantly to its efficiency.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the system execution graph data model,
and the diagnosis primitives applied to the graph. Sec-
tion 3 presents the operators, and the language that
G2 supports, as well as several examples expressed in
those constructs. The design and optimization of the dis-
tributed graph engine is the focus of Section 4, followed
by implementation details in Section 5. We evaluate G2

and share experience in Section 6. Section 7 discusses
the related work. Finally, we conclude in Section 8.

2 MODEL

Distributed-system diagnosis in G2 centers on the data
model and the operations defined on the model, which
are the topic of this section.

2.1 Text, Paths, and Graphs

Traditionally, system diagnosis treats runtime infor-
mation (e.g., logs) asunstructured text and involves a te-
dious and ineffective process of going through logs using
primitive text-processing tools such as grep. Using grep
on a special tag (such as a request id) captures all entries
that are explicitly related to that request, but is likely to
miss information that has implicit dependencies.

Previous work [14, 7, 13, 8, 20, 18, 27] on correlating
runtime information has effectively addressed this short-
coming by capturing common causal relationship in dis-
tributed systems. Apath-like abstraction is often used to
track how a request flows through a distributed system.
This relatively simple structure is effective for request-
centric analysis and modeling, and reflects a good bal-
ance between what an abstraction enables, the simplicity
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of an abstraction, and the complexity involved in sup-
porting operations on an abstraction.

Yet, the effectiveness of a path-based model is con-
strained by its simplifying assumptions: by embracing
paths based on requests, the model cuts off interactions
between requests that occur in distributed systems. For
example, Figure 1 shows a piece of code for a replicated
file system. The system receives client requests and ap-
pends them in a local cache (line 2-4). When there are
enough accumulated requests (line 6), the system batches
requests, writes them to local disks (line 11), and for-
wards them to secondaries for data replication (line 12).
TheOnPersistRequests call in Figure 1 is in fact a batch
operation of multiple write requests from clients to the
distributed file system. In such a case, it is difficult to as-
sign a path id to the events inside the call (e.g., eventh
can only share with the path id frome or f , but not both).
Two paths might also be correlated when they access the
same shared variables. In fact, a more general graph is
already used to some extent in previous work such as
Pip [26].

G2 instead explores a different point in the design
space. Rather than constraining users to a path-based
model a priori, G2 preserves and presents the full struc-
ture captured during the execution of a distributed system
as a graph. During diagnosis, users can choose to con-
struct paths from such a graph if paths are appropriate for
the diagnosis task at hand, or they can choose to process
information in a different way that is more appropriate
for that particular task. G2 does not make that decision
for users during the modeling phase. This design choice
effectively shifts the burden to the underlying distributed
engine, as it must enable efficient operations on a more
complicated graph structure.

2.2 Execution Graph

G2’s execution graph model embraces two key concepts:
causality andaggregation. This is based on our observa-
tion of common system diagnosis practices: users tend
to (i) follow cause-effect relations to find relevant infor-
mation and (ii) to summarize runtime information at an
appropriate aggregation level in a hierarchy in order to
find trouble spots for further in-depth analysis.

In an execution graph of G2, each runtime event from
a target system is represented as avertex. In Figure 1,
events are shown in small rectangles; examples areprintf
log eventb (line 3), asynchronous request define eventsc
andd, and request use evente. A context is associated
with an event, indicating the aggregation units that the
event belongs to. Multiple levels of aggregation units can
be defined. Examples include static constructs, such as
modules, classes, and functions, as well as runtime con-
structs, such as machines, processes, and threads.

Runtime events are correlated, where directed edges

in an execution graph are used to represent such correla-
tions. Different types of edges can be defined for differ-
ent types of correlations. For example, anuse edge con-
nects a source event that defines/forwards an object with
a destination event that consumes that object. Network
messages or cross-thread requests are examples of such
objects.〈c,e〉 and〈d,e〉 in Figure 1 are use edges. Async
edge indicates synchronization of two events from two
different threads in order to ensure exclusive access to a
shared object or ensure ordered inter-thread execution. A
fall-through edge connects two consecutive events in the
same thread (e.g.,〈b,c〉).

G2 provides primitives to define and customize graph
traversal for diagnosis. Two are built-in:Slicing finds all
causally related events in a graph andHierarchicalAg-
gregate summarizes information at an appropriate aggre-
gation level.

2.3 Filter with Slicing

Instead of simply “grepping” runtime information with a
special tag,Slicing filters information using graph struc-
ture: it starts from aroot event and transitively col-
lectscausally dependent events. Forward and backward
traversal yield aforward slice and abackward slice, re-
spectively.

Computing precise and complete causal dependen-
cies for slicing is usually too costly if not infeasible,
where a reasonable approximation is often sufficient in
practice. A naive way is to consider alluse and fall-
through edges ascausal edges. Our practical experience
has shown that fall-through edges often do not imply
causal relations. For example, in a typical implementa-
tion of message processing subsystem, a thread will con-
tinuously accept new incoming messages and call corre-
sponding message handlers. Fall-through edges between
two message handler invocations do not represent any
meaningful causal dependencies. Such false causal de-
pendencies could render slicing ineffective. All events
in the corresponding message handler should however
be considered causally dependent on the message-send
event. G2 introducescausal scope to specify, for each
use edge, the set of events that are causally dependent on
the source event of that edge. A causal scope consists of
a continuous region from the destination event of each
use edge: all events within that region are causally de-
pendent on the source event; all fall-though edges within
that region are considered causal edges. In Figure 1, large
rectangle boxes define causal scopes. The shaded area
outlines the forward slice from eventa.

2.4 Summarize with HierarchicalAggregate

Aggregation is another effective way of managing a large
amount of data, especially with a hierarchy. There are
natural hierarchies in distributed systems: a program is
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OnReceiveClientRequest 

e 

1  class ClientReq { 

2  void OnRecieveClientRequest(...) { 

3     Log(LOG_INFO, "...");  

4     IssuePersistRequest(...); } 

5  int PersistMainThread() { 

6      while (IsEnoughRequest(reqs)) 

7          OnPersistRequests(reqs); 

8          …} 

9  int OnPersistRequests(list<ClientReq*> reqs) { 

10     MemBuf* buf = CreateBuf(reqs); 

11     WriteToLocalDisk(buf); 

12     ForwardToSecondary(buf, ...); } . . .  
. . .  

a d 

Figure 1: System execution graph, causal scope, and slice.

often made of modules, each module is comprised of
classes, and each class contains a set of functions. A
distributed-system execution can be aggregated at thread
level, then at process level, and further at machine level.
A distributed system often consists of multiple logical
layers that are application-specific: for example, a sys-
tem behavior can be analyzed at an RPC layer or at a
lower OS layer with a socket interface.

G2 supports an important notion calledhierarchical
aggregation. The key idea is to construct a condensed
graph at an appropriate layer of a hierarchy to summarize
system behavior. A continuous segment of events with
the same aggregation unit in an execution graph is sum-
marized and condensed into a single higher-level vertex
in the resulting graph. G2 by default attaches signatures
of code and runtime location to all events for aggrega-
tion. Aggregation in G2 is customizable: a user can lever-
age her domain knowledge to specify how to aggregate
events and summarize high-level information (e.g., ag-
gregated performance counters) from low-level events.

Figure 2 shows an example of event aggregation
when debugging replication in the distributed storage
for SCOPE. Numbers inside rectangles are total event-
counts within corresponding vertices in the aggregated
graphs. An error occurs during a replicated write opera-
tion. The upper part of Figure 2 performs event aggrega-
tion at machine level: it clearly shows whether the write
operation was propagated to all replicas. Once a sus-
pected machine is identified, a user selects that machine
and zooms in to see how the write request was processed
by each component in this machine, shown in the lower
part of Figure 2.

3 PROGRAMMING IN G2

Programming in G2 consists of two parts. One is to “pro-
gram” distributed systems so as to to make them diag-
nosable by G2. We defer this to Section 5. The other is
for “programming” queries to be executed on G2, which
is the focus of this section.

Message::DoExecution (12) 

I/O 

Replication 

Network 

Time 

ReplicateWrite (149) 

SerializedIOWrite (17) 

WriteRequestFailed (24) 

Primary (440) 

Machine 2 

Machine 1 

Machine 0 

Time 

Secondary 1 (144) 

Secondary 2 (202) 

ReplicateWrite 

ReplicateWrite 

Figure 2: Hierarchical aggregation for a replication im-
plementation. Numbers in rectangles show numbers of
events within vertices in the aggregated graphs.

1 Graph<TV, TE> Slicing (
2 this Vertex<TV, TE> srcVertex,
3 Slice.Type type);
4

5 Graph<THighV, THighE>
6 HierarchicalAggregate (
7 this Graph<TLowV, TLowE> g,
8 Func<Vertex<TLowV, TLowE>, __out UInt64> labelCb,
9 Func<VertexIterator<TLowV, TLowE>,

10 __out THighV> AggreFunc);

Figure 3: Graph operators.

3.1 Graph Operators

Figure 3 shows the basic graph operators. EachVertex
contains its incoming and outgoing edge lists, and it is a
generic type that can be instantiated with〈TV ,TE〉. Type
TV describes the data associated with the vertex, such as
logs, code locations, and runtime locations, while type
TE describes the data associated with each edge, such as
timestamps for the source and the destination events. A
genericGraph type can be further defined as a collection
of vertices.

As shown in the figure, operatorSlicing takes
srcVertex as the root event andtype as the di-
rection (forward or backward) for slicing. Operator
HierarchicalAggregate condenses a graph to a higher-
level graph (line 5). Given a vertex in the original graph,
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1 Events
2 .Where(e => e.Val.Type == EventType.LOG_ERROR
3 && e.Val.PayLoad.Contains("Write request failed"))
4 .Slicing(Slice.Backward)
5 .Select(e => Console.WriteLine(e.Val.PayLoad));

(a) Error log analysis.

1 var req = Events
2 .Where(e => e.Val.Location.Name=="SubmitWriteReq");
3 req.Slicing(Slice.Forward)
4 .HierarchicalAggregate(
5 e => e.Val.Process.Machine.Signature,
6 evts => evts.First().Val.Process.Machine.Name)
7 .CriticalPath(req,dst,e=>{e.Val.SrcTs, e.Val.DstTs});

(b) Machine level critical path analysis.

1 var s1 = Events.Where(t => t.VertexID == 1)
2 .Slicing(Slice.Forward)
3 .HierarchicalAggregate(...aggregate by component...);
4 var s2 = Events.Where(t => t.VertexID == 2)
5 .Slicing(Slice.Forward)
6 .HierarchicalAggregate(...aggregate by component...);
7 s1.Diff(s2, e => {e.Val.SrcTs, e.Val.DstTs});

(c) Component level performance regression analysis.

Figure 4: Sample diagnosis queries.

the labelCb callback returns its aggregation-unit label.
The AggreFunc callback aggregates a continuous se-
quence of vertices with the same label (line 9) into a new
vertex at the high-level graph (line 10) (Note the structure
is determined by G2, and the associated value(THighV)
is defined by the callback).

All those operators are built on top of two dis-
tributed primitives: GraphTraversal and MapReduce.
GraphTraversal starts with a set of vertices in a graph
and traverses the graph by following edges forward,
backward, or bi-directionally. A user can customize
graph traversal by deriving a graph traversal class, which
defines computations on vertices, messages passed along
edges, as well as final output during graph traversal.
MapReduce is standard with a map function and a reduce
function for aggregation. Details of these distributed
primitives and how they are used to build graph opera-
tors are left to Section 4.

3.2 Composing Graph Operators

Extensibility and composability are two key fea-
tures of G2 design for programming.Slicing and
HierarchicalAggregate both consume a graph and pro-
duce another, so they can be composed. We further lever-
age the extensibility of the LINQ framework [3] in .Net,
so that developers can write diagnosis queries using our
new operators, LINQ’s relational operators, and even
customized local analysis modules, such as finding crit-
ical path (CriticalPath) and comparing two aggregated
graphs (Diff ). Figure 4 shows a set of examples; all from
real diagnosis practice.

The first query returns the logs in a backward slice

Local Graph 
Traversal 

Partition 

Where 

Mapper 

Local Graph 
Traversal 

Where 

Mapper 

Reducer 

Local Graph 
Traversal 

Mapper 

Reducer 

Critical path analysis 

HierarchicalAggregate 

Where 

Slicing 

CriticalPath 

Merge Merge 
Engine 

Client 

Partition 

Local Graph 
Traversal 

Local Graph 
Traversal 

Local Graph 
Traversal 

Where 

Partition 

Figure 5: Data flow for the machine-level critical-path
analysis query in Figure 4 (b).

rooted from an error log event. The query first uses
Where in LINQ to locate the error event and then in-
vokesSlicing. The second query aims to find straggler
machines during processing of a request. The query first
calculates the forward slice from the point of request
submission, aggregates the slice into a machine-level
graph viaHierarchicalAggregate, and computes the crit-
ical path for request processing. Each vertex in the re-
turned critical path summarizes a continuous execution
on a machine with the start and stop times of the execu-
tion, from which stragglers can be easily identified. The
last query intends to find components responsible for an
instance of slower-than-normal request processing. It ex-
tracts forward slices rooted from the slow request and
normal ones, aggregates at the component level, and out-
puts differences. If needed, users could drill down into
problematic components and investigate further at the
function level or lower.

4 DISTRIBUTED ENGINE

A distributed engine is responsible for transforming di-
agnosis queries into distributed jobs to be executed on
the set of machines storing the execution graphs.

4.1 Overview

In G2, events and correlations between events are cap-
tured and recorded locally, and transformed into appro-
priate graph representations. G2 therefore naturally par-
titions original system execution graphs based on where
events occur. Such a partitioning method tends to exhibit
good locality as distributed systems are usually designed
to minimize cross-machine traffic.

A job manager initiates ajob when a query is sub-
mitted. Each machine storing graph partitions runs a
daemon. The job manager coordinates executions of
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phases by communicating with these daemons. A job
involves multiple phases that can be represented as a
data flow graph. Figure 5 shows the data flow graph
for the machine-level critical-path analysis query in Fig-
ure 4 (b). It consists of 5 phases: Where, Slicing, Hi-
erarchicalAggregate, Merge, and CriticalPath. The dis-
tributed engine takes care of the first 4 phases and sends
the aggregated results to clients for local critical-path
analysis. The Merge phase does not appear in the orig-
inal query and is added automatically during compi-
lation. Both Slicing and HierarchicalAggregate involve
graph traversal, where the latter consumes the graph cre-
ated by the former and outputs an aggregated graph for
client analysis. In particular, the mappers during Hierar-
chicalAggregate shuffle the vertices according to which
high level vertex they belong to, and the reducers aggre-
gate the vertices inside one high level vertex using the
AggreFunc callback provided by the queries.

The part of the data flow graph without graph
traversal is similar to directed acyclic graphs (DAG)
in previous data-parallel computation engines, such as
Map/Reduce and Dryad. Graph traversal however re-
quires a different type of coordination to support loops
and barriers. G2’s graph traversal support distinguishes
itself from previous graph engines (e.g., Pregel [24]) in
several noticeable ways. First, for operations such as slic-
ing and hierarchical aggregation, G2 supports batched
asynchronous iterations, where partitions batch opera-
tions locally, but do not have to be synchronized using a
barrier in each iteration. Second, G2 exposes a partition-
level interface, rather than a vertex-level interface, to al-
low better batching and aggregation for graph computa-
tion. This is particularly important for enabling efficient
implementation of hierarchical aggregation. These opti-
mizations can be applied not only to G2 but also to other
distributed graph traversal problems such as shortest path
computation.

4.2 Batched Asynchronous Iterations

A typical graph engine implementssynchronous itera-
tions through loops and barriers. For graph computation
such as page-rank computation and belief propagation,
all participants must synchronize with each other in each
iteration via a barrier, and in each iteration the partici-
pants can only traverse one hop. Such synchronization is
easily done with the help of a job manager.

In G2, we observe that graph traversal for slicing
and hierarchical aggregation is inherentlyasynchronous.
Take forward slicing for example, each partition has a
set of vertices to start with in each iteration (except the
first one where only one partition has the root vertex).
For one local iteration, a partition starts graph explo-
ration from those vertices following causal edges until
it reaches cross-partition edges without synchronization

1 IQueryable<T> GraphTraversal<TWorker> (
2 this Graph<TV, TE> g,
3 IQueryable<Vertex<TV, TE>> startVertices
4 ) where TWorker : GPartitionWorker<TV, TE, _, T>;
5 class GPartitionWorker<TV, TE, TMsg, T> {
6 Vertex<TV, TE> GetLocalVertex(ID VertexID);
7 void SendMessage(ID VertexID, TMsg msg);
8 void WriteOutput(T val);
9 virtual void Initialize(VertexIterator<TV, TE>)=0;

10 virtual void OnMessage(Vertex<TV, TE>, TMsg) = 0;
11 virtual void Finalize() = 0;
12 };

(a) GraphTraversal interface.

1 class GPartitionSlicingWorker<TV, TE>
2 : GPartitionWorker<TV, TE, bool, Vertex<TV, TE>> {
3 HashSet<ID> VisitedVertices;
4 void Initialize(VertexIterator<TV, TE> inits) {
5 foreach (var v in inits)
6 SendMessage(v.ID, true);
7 }
8 void OnMessage(Vertex<TV, TE> v, bool msg) {
9 if (VisitedVertices.Contains(v.ID)) return;

10 VisitedVertices.Add(v.ID);
11 WriteOutput(v);
12 foreach(var e in v.OutEdgeIterator)
13 if (e.IsCausal())
14 SendMessage(e.DstVertexID, true);
15 }
16 void Finalize() {}
17 }

(b) GPartitionSlicingWorker for forward slicing.

Figure 6: GraphTraversal interface and example

with others after every one hop traversal. When this it-
eration ends, a partition reports to the job manager with
pointers to lists of vertices to other partitions for further
exploration. The job manager will notify other partitions
of the availability of these lists. A partition finishing the
current iteration can fetch the lists of new vertices from
other partitions and start the next iteration. It does not
have to wait to get lists from all other partitions before
initiating the next iteration.

G2 does support global barriers for two cases. In
the first case, completion of a graph-traversal stage is
through a global barrier: all participants must have com-
pleted their last iteration locally. The job manager initi-
ates the next phase of computation only after that global
barrier is established. In the second case, the job manager
can periodically introduce a barrier to an ongoing graph-
traversal stage for failure recovery; the barrier is used to
perform a globally consistent snapshot.

4.3 Partition vs. Vertex

G2 provides a GraphTraversal interface so that users can
implement their own custom graph-traversal algorithms.
Previous graph processing systems such as Pregel allow
users to specify actions on each vertex, which is natu-
ral for a large number of graph computation algorithms.
However, we have found a partition-level interface offers
additional opportunities for better performance.
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Graph Traversal Interface. Figure 6 (a) shows the sig-
nature ofGraphTraversal. It starts from a set of initial
vertices (line 3), with traversal polices designated by
TWorker derived fromGPartitionWorker (line 4). When
a graph traversal phase starts, G2 creates an instance of
GPartitionWorker on every graph partition ofg (line 2),
and the job manager coordinates the workers to perform
multiple iterations of computation: a first round forIni-
tialize (line 9), followed by multiple rounds of graph
traversal via message exchanges among vertices (line 10)
until all workers reach the completion barrier, and a last
round forFinalize (line 11). In each round, a worker cre-
ates remote messages for other partitions. Those remote
messages are eventually transported to appropriate parti-
tions and serve as the input for next-round computation
on those partitions.
Forward Slicing. Figure 6 (b) shows a sample that im-
plements forward slicing. DuringInitialize, the worker
sends a message to the initial vertices of the graph
traversal viaSendMessage (lines 5,6). After initializa-
tion, each worker invokesOnMessage (line 8) on each
message, inside which a worker can read/write partition-
local states (lines 9,10), produces partial outputs via
WriteOutput (line 11), and send messages to other ver-
tices viaSendMessage (line 14) by following the edges
of the current vertex (line 12).OnMessage doesnot cause
a real network message to be sent: for a local destination,
the worker again appliesOnMessage on the destination
vertex in the current round. Only messages destined to
a remote partition are gathered and made available to
other partitions at the end of this iteration. After a worker
completes the current round, it fetches the available re-
mote messages for its partition from other partitions, and
starts a new round. This process ends when all workers
have completed the current rounds with no new remote
messages. In the final round, the workers invokeFinalize
(line 16), which usually produces outputs of this traver-
sal phase from final local states. It is empty in this case
because output is generated during traversal (line 11).
Hierarchical Aggregation. The value of exposing a
partition-oriented interface is more evident in the imple-
mentation ofHierarchicalAggregate.

Figure 7 (a) shows a simple vertex-oriented imple-
mentation from a vertex’s perspective. Each vertex has
a label based on its context; for example, the label is its
process id for process-level aggregation. We useAggId
to identify a set of vertices that have already been aggre-
gated together: those vertices will have the same value
v.AggId. Every vertex uses its ownID as the initialAggId
(line 3), and broadcasts both its label andAggId to its
neighbors (lines 4,5). A message is ignored when a re-
ceiving vertex has a different label (line 8), indicating
a boundary of aggregation. Otherwise, if an incoming
AggId is smaller than the current one, a vertex changes

1 void Initialize(VertexIterator inits) {
2 foreach (Vertex v in inits) {
3 v.AggId = v.ID;
4 foreach (Vertex iv in neighbour vertices)
5 SendMessage(iv, {v.ID, v.Label});
6 } ...
7 void OnMessage(Vertex v, MSG msg) {
8 if (msg.Label != v.Label) return;
9 if (msg.AggId < v.AggId) {

10 v.AggId = msg.AggId;
11 foreach (var e in connected edges)
12 SendMessage(e.DstVertexID, msg);
13 } ...

(a) Vertex oriented implementation.

1 Map<ID, ID> VertexLeader; // vertex->leader
2 Map<ID, ID> LeaderAggIds; // leader -> aggId
3 Map<ID, ID[]> RemoteVertexGroup;//leader->rvertices
4 void Initialize(VertexIterator inits) {
5 ... local aggregation to initialize the maps ...
6 ... send messages to remote vertices ...
7 }
8 void OnMessage(Vertex v, MSG msg) {
9 if (msg.Label != v.Label) return;

10 ID leaderId = VertexLeader[v.ID];
11 int oldAggId = LeaderAggIds[leaderId];
12 if (msg.AggId < oldAggId) {
13 ... update aggId for the group ...
14 foreach (var vid in RemoteVertexGroup[leaderId])
15 SendMessage(vid, msg);
16 } ...

(b) Partition oriented implementation.

Figure 7: Optimization forHierarchicalAggregate.

its ownAggId and propagates the change to its neighbors
(lines 9-12). The traversal ends when all vertices are as-
signed the smallest label of the vertices to be aggregated
together.

Figure 7 (b) shows a partition-oriented implementa-
tion, where partition-level aggregated states are main-
tained (lines 1-3) and initialized (lines 5-6). These data
structures essentially aggregate local continuous seg-
ments with the same labels and update them as a sin-
gle unit during traversal, rather than going through each
vertex repeatedly: each local continuous segment with
the same label is assigned a leader. Rather than having
each vertex maintaining anaggId, the partition main-
tains a mapping from leaders toaggIds inLeaderAggIds.
Because vertices with the same leader always have the
sameaggId, a partition can simply update one entry
in LeaderAggIds for all those vertices when theaggId
changes for any of the vertices. Similarly, destination
vertices of cross-partition edges from this segment of
vertices are recorded inRemoteVertexGroup and can be
identified without following the edges within this seg-
ment repeatedly. Those data structures are populated dur-
ing initialization. When a message arrives at a partition
with a boundary vertex as the destination vertex, the
worker checks its label (line 9), and updates theAggId
of the corresponding leader vertex if it receives a smaller
AggId (lines 10-13). Finally, it broadcasts the newAggId
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Component Name Language LOC(K)
Annotation Library C++, C 3.4
Binary Rewriter C++/CLI 1.6
Transformer C++ 1.5
Engine(JobMgr,Daemon,MetaSvr)C++ 27.5
FrontEnd(Compiler, JobClient) C# 17.3
VS AddIn(Wizards, UI) C# 57.8
Total - 109.1

Table 1: Components in G2.

to its cross-partition neighbors (lines 14-15).

4.4 Failure Handling

G2 supports iterative graph computation, which renders
inapplicable the map/reduce type of failure recovery us-
ing re-computation. In a synchronous graph computa-
tion model, where a global barrier is established at each
round, a globally consistent checkpoint can be taken at
each barrier. When failures happen, computation can be
rolled back to the most recent checkpoint. G2 allows each
partition to maintain states. A checkpoint therefore cov-
ers such per-partition state, as well as the remote mes-
sages that each partition generates at the end of a round
for other partitions. Appropriate levels of redundancies
might be needed for checkpoints in order to recover from
permanent machine failures.

With an asynchronous graph computation model, G2

can choose to insert a global barrier at an appropriate in-
terval for consistent checkpointing. We can also resort
to the standard Chandy-Lamport algorithm for taking a
consistent snapshot, where a global barrier is a special
simple (yet less efficient) implementation for this algo-
rithm. In the worst case, G2 can always roll back to re-
execute a graph-traversal phase (assuming that failures
do not lead to data loss in the original graph information).
Our current implementation uses global barriers for con-
sistent checkpointing, but do not replicate the checkpoint
to tolerate permanent failures.

5 IMPLEMENTATION

G2 provides a complete tool set to help developers diag-
nose systems. Table 1 shows the programming language
and lines of code for components of G2: annotation li-
brary and binary rewriter are used to capture system ex-
ecution graphs. Transformer is used to store a graph. En-
gine, Front-End, and Visual Studio AddIn are for pro-
cessing and visualizing a graph.
Capture Graph. G2 can use existing traces from pre-
vious work, e.g., those on path-based analysis, to build
execution graphs. It also provides its own tool chain for
developers to instrument target systems for gathering in-
formation of interest. Whether instrumentation requires

manual code change depends on the types of edges to
be captured. We have developed a Phoenix [5] based
binary rewriter tool to annotatesynchronous use edges
(i.e., call) and their corresponding causal scopes (i.e., the
call boundary) automatically. A user can choose what
to instrument with a configuration file, reflecting her
choice to balance between cost and coverage. G2 also
capturessync edges automatically at the Win32 layer by
instrumenting Windows synchronization APIs. Forasyn-
chronous use edges, G2 provides an annotation library;
the following code illustrates how to track network mes-
sages and their corresponding handlers using this library.
Users first annotate a context(NetworkMsg) by making
it inherit a G2::CausalCtx object. Users then add a call
to LogUseEdgeBegin andLogCausalScope respectively,
when this context is about to be delivered and used. The
macro call ofLogCausalScope is a C++ object, whose
lifetime defines a causal scope.

1 class NetworkMsg : public G2::CausalCtx {
2 int Send(...) {
3 LogUseEdgeBegin(this, ...);
4 ...
5 } ...
6 void OnRecvNetworkMessage (NetworkMsg& msg, ...) {
7 LogCausalScope(msg);
8 msg.Execute(...);
9 ... }

Store Graph. We developed aTransformer that converts
raw runtime-event streams to database tables. G2 stores
a system execution graph in four relational tables. Each
object has a unique key, which we use as reference keys
across tables and partitions. TheCodeLocation provides
the context for each event and in particular the compo-
nent, class, function, file, and line number of the state-
ment that generates the event. TheProcessInfo table cov-
ers the runtime process information, such as process id,
machine name, process start time, and so on. TheEvent
table contains information about each event, including
its type, a reference to an edge if it is an endpoint of that
edge, a physical timestamp, references toCodeLocation
andProcessInfo, and payload (e.g.,printf log content).
TheEdge table contains the edge type, a unique edge ID,
and references to the source and destination events. The
Edge table defines thestructure plane of a system execu-
tion graph, while the other three form thedata plane. A
slicing operation can be done purely on theEdge table,
but for event aggregation it is often necessary to query
the CodeLocation andProcessInfo tables. TheEdge ta-
ble is frequently accessed during graph traversal and is
therefore cached in memory for fast access.
Process Graph. Queries submitted to G2 are compiled
into a distributed query plan, with appropriate resource
files dispatched to workers running on machines manag-
ing partitions of a graph. Execution of a query plan is
done through coordination between the job manager and
the workers, as described in Section 4. The job manager

8



Systems Acs# Ace# Func# Rule#
G2 9 11 197 10
SCOPE/Dryad 17 13 730 5
BerkeleyDB 2 2 1,542 23

Table 2: Instrumentation statistics.Acs#, Ace#, Func#,
and Rule# refer to the number of manually annotated
causal scopes, manually annotated edges, instrumented
functions, and rules in the configuration files for the bi-
nary rewriter, respectively.

monitors progress of graph traversal and assists in mes-
sage exchanges between workers. After a round of local
processing ends on a partitionA, the worker forA groups
messages based on their destinations and notifies the job
manager of the list of partitions with data fromA. The job
manager piggybacks the list partitions with data ready for
A. The worker forA will then fetch those from the corre-
sponding workers. To make message exchange efficient,
workers cache generated message groups in memory and
discard them after they are fetched. The job manager is
also responsible for enforcing global barriers upon com-
pletion of graph traversal, as well as to create consistent
checkpoints.

6 EXPERIMENTS AND EXPERIENCE

We have applied G2 to SCOPE/Dryad, G2 itself, and
BerkeleyDB. Our evaluation attempts to answer the fol-
lowing questions: a) what is the cost of applying G2?
b) how does the G2 engine perform on real execution
graphs? c) does G2 help developers diagnose compli-
cated distributed system problems?

Target systems are co-deployed with G2 on a cluster
of 60 machines; each has a dual 2GHz Intel Xeon CPU,
8 GB memory, two 1TB SATA disks, and are connected
with 1 Gb Ethernet.

6.1 Cost of Applying G2

Human effort. Table 2 reports the statistics about the
annotation effort to apply G2 on these systems. For in-
strumenting functions, users write only a configuration
file for the binary rewriter to specify names of functions
they are interested in. For all three cases, the configura-
tion files are less than 25 lines, as shown in Table 2.

The asynchronous use edges and correspondent
causal scopes require manual annotation on source code.
Our experiences show that most asynchronous messages
and events are handled by a small number of compo-
nents or by a middleware library, making annotation
easy. We annotated fewer than 20 places for each bench-
mark. Annotations on G2 took us less than one hour. In-
terestingly, in our SCOPE/Dryad experiment, we did for-
get to annotate a place where the code directly uses the

CreateProcess function to create a new process, bypass-
ing the middleware component that we annotated. Such
cases are rare and can often be discovered during a di-
agnosis process. Developers can optionally capture other
dependencies: we do not model those.
Runtime overhead. Runtime overhead for emitting
events and edges is comparable to those in previous work
on capturing causal dependencies [14, 7, 13, 8, 19, 26,
18, 27]. There are several categories of events/edges.
The first category are asynchronous use edges and
the corresponding causal-scope events (e.g., message
send/receive), which are always captured. The second are
legacyprintf logs. These two parts do not introduce no-
ticeable system slowdown compared to previous systems
(with the sameprintf logs). The third are events from in-
strumented functions, and the cost is proportional to the
numbers of function invocations that are captured. Usu-
ally invocations of interface functions of each component
that are associated with error and failure handling are
enough for diagnosis. For our experiments on the three
distributed systems, only less than 0.1% of overall func-
tion invocations are captured in system execution graphs,
and no noticeable overhead was observed. If more func-
tions need to be instrumented, and we cannot afford to
instrument all, we can turn to dynamic instrumentation
techniques as done in our previous work [23].

Table 3 reports the statistics on sample execution
graphs from our target systems. The G2 data include
events from executing tens of diagnosis queries against a
SCOPE/Dryad snapshot. The SCOPE/Dryad data came
from ten SCOPE queries for calculating different statis-
tics of web data. The BerkeleyDB data was collected dur-
ing approximately one hundred instances of system ini-
tialization guided by a model checker; the goal is to use
G2 to assist model checking research in another project.
All numbers reported are per-machine averages. For ex-
ample, for SCOPE/Dryad, a 120-minute trace generates
about 1.2GB of G2 data on each of the 60 machines.
On average, the imposed I/O bandwidth ranges from
85.3 KB/s (G2) to 174 KB/s (SCOPE/Dryad) on aver-
age, which did not cause noticeable runtime interference
to the host systems. Not reported in this figure, in our
sample SCOPE/Dryad execution graph, about 28% of the
events recorded are legacy logs (category 2), which ac-
count for 64% of total sizes. Category 1 accounts for 33%
by count and 16% by size, while category 3 takes the rest.

6.2 Performance Evaluation

This section evaluates the performance of G2 engine.
Graph statistics. Table 3 shows the numbers of edges
and vertices for the sample execution graphs from our
target systems. The number of edges is far fewer than the
number of events because all fall-through edges are im-
plicit. The func# is the number of invocations for instru-
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Systems LOC(K) Func# Edge# Event# Raw(MB) DB(MB) Time(min) node#
G2 27 267,728 634,704 1,212,778 85 231 17 60
SCOPE/Dryad 1,577 3,128,105 8,964,168 20,106,457 1,226 3,269 120 60
BerkeleyDB 172 46,164 92,502 186,597 14 29 2 3

Table 3: Execution graph statistics about a snapshot for the targetsystems.

mented functions as specified in Table 2. System execu-
tion graphs can be large: the SCOPE/Dryad snapshot has
on average more than 20 million events on each machine.
The database size (DB) is approximately three times the
raw event stream size (Raw), due to verbose DB data for-
mat (factor of 1.5) and associated indices. Theedge table
(including its indices) counts for only 30% of the total
database size. Because it is frequently accessed, caching
it in memory makes sense.

End to end performance. We evaluate the end to end
performance of G2 with 5770 random queries on the
SCOPE/Dryad graph. Each query calculates a forward
slice from a randomly selected root event and then com-
putes a process-level aggregation on the slice. Figure 8
shows the overall running time of these queries with all
optimizations turned-on. The G2 engine is generally fast
on these queries: 94.5% queries finished within 5 sec-
onds, with only three queries (in the upper-right circle)
taking more than 100 seconds. Our investigation shows
that the randomly chosen root events for those three
queries are close to the entry point of the Dryad job,
yielding huge slices with up to 130 millions of events.
Running time depends not only on the sizes of resulting
slices, but also on properties of the graph (and its par-
titions), those properties dictating concurrency of query
processing. For example, some queries (in the circle on
the left) take more than 50 seconds, even though the cor-
responding slices are relatively small. This is because
they experience a period of time with low concurrency.

We also inspected the result of hierarchical aggre-
gation. The result shows that it is effective in simpli-
fying graphs. All resulting process-level graphs contain
less than 85 vertices, except the three queries in the up-
per right circle: the aggregation yields graphs with only
0.01% of vertices.

Graph and graph computation characteristics. We
recorded and examined a large forward-slice computa-
tion on the SCOPE/Dryad graph. Figure 9 shows how the
numbers of events, local edges, and remote edges vary
over time. The SCOPE/Dryad job has a bootstrap phase,
during which a job scheduler copies resource files be-
tween machines. In the actual execution, this phase takes
little time. However, because this phase involves a series
of communication, slicing at this segment of the execu-
tion graph has little concurrency. It takes a relatively long
time to process even though the number of events and the
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Figure 9: How the # of events, local edges, and remote
edges vary along the execution time.

total I/O are small. This is reflected in the flat start in the
figure. Graph traversal experiences respectable concur-
rency in the middle range when traversing the portion of
the graph for the real Dryad execution. Then after around
time 00:40 it starts to process the portion of the graph
corresponding to the final phase, in which a job manager
again has to talk to many machines to fetch statistics and
to write them into a distributed file. The overall concur-
rency level on 60 machines is 7.23.
Effectiveness of graph engine optimizations. To eval-
uate the effectiveness of batched asynchronous itera-
tion and partition-oriented interface design, we mea-
sured bothSlicing and HierarchicalAggregate perfor-
mance with nine different configurations, which are the
combinations of two dimensions of configurations. The
first is whether to enableBarriers among workers and
Checkpointing after each round (None, B, or B/C). The
second is to choose which local graph traversal policy
(OneHop, Batched, orPartition). OneHop is to allow one
hop traversal only in each round, a typical setting for
other graph engines such as Pregel;Batched is to tra-
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Phase OneHop Batched Partition

Slicing(None) 1.49 0.99 1.00
Slicing(B) 2.70 1.19 1.21
Slicing(B/C) 2.86 1.27 1.27
Aggregation(None) 1.80 1.48 1.00
Aggregation(B) 2.67 1.91 1.01
Aggregation(B/C) 3.40 2.42 1.09

Table 4: Relative execution time for the component level
aggregation analysis with nine different configurations.
Abbreviations: B - barriers are enabled among workers;
B/C - barriers are enabled among workers, and partition
state is checkpointed.

verse until no further local vertices to be visited during
this round; andPartition is similar to the second, but
with the partition-state optimization discussed in Sec-
tion 4.3, enabled by G2’s partition-oriented interface. Ta-
ble 4 shows the average relative execution time for the
component level aggregation analysis for a Dryad job
with the nine configurations; each runs ten times. To be
fair, with 〈OneHop,B/C〉, we checkpoint every 7 and 18
rounds for slicing and aggregation, respectively, so that
they take approximately the same number of checkpoints
as in other configurations.

Overall, batched asynchronous iterations and
partition-oriented interface are effective: without check-
pointing, we see a 62-63% reduction in latency for both
slicing (2.70 vs. 1) and hierarchical aggregation (2.67
vs. 1). The data also reveal the following: (i) Batched
asynchronous iterations bring benefits in two ways:
First, it allows local traversal to proceed (as inBatched)
and significantly reduces the number of global rounds
(from 208 rounds to 28 rounds for Slicing and from
111 rounds to 6 rounds for hierarchical aggregation).
Second, it removes the need for global barriers. This is
particularly effective when there are many rounds and
significant variations across machines in each round. It
is noticeably ineffective for Aggregation (〈Partition,B〉,
〈Partition,None〉) because our partition-oriented op-
timization makes process-time variations between
partitions negligible. (ii) Partition-oriented interface and
data structures are effective for Aggregation (with 32%
reduction) because we are seeing large local islands
(e.g., one island with 7.7 million internal edges and
only 2,895 remote edges): those local islands do not
have to be visited repeatedly with our optimization. (iii)
Overhead of checkpointing depends on how frequent
we checkpoint and how much data we checkpoint.
OneHop introduces lower overhead (5.11 MB/s) because
it checkpoints the same amount of state in a longer time
period compared to Batched (7.18 MB/s), and Batched
has higher overhead compared to Partition because its
state size is larger than that under Partition (5.96 MB/s).

Scaling performance. We evaluated scaling perfor-
mance from two perspectives. The first is to measure
scaling in terms of the number of machines. We do not
show figures due to space constraints. We observe that
the job latency decreases almost linearly initially when
more machines are used. But after we have more than 16
machines, the speedup slows down due to inherent limit
on concurrency. With 60 machines, the average latency
is reduced to under 3 minutes from over 14 minutes on 8
machines.

The second is to measure scaling in terms of the num-
ber of concurrent queries. We use two different sets of
slices for those queries. The first set has several large
slices, which involves 5 to 8 graph partitions and con-
tains approximately 0.4 to 1 million events. The second
set has a set of randomly selected slices, which typically
involves 1 to 2 machines and contains several thousands
of events. For large slices, latency increases dramatically
when we reach 100 queries. For small slices, the system
can support almost 500 queries simultaneously without
affecting query latencies and can handle 5,000 queries
with an average latency under 3 minutes.

6.3 Experience, Limitations and Future Work

To make G2 accessible to developers, we have built a set
of templates to guide the use of the system and integrated
the tool into Visual Studio for a seamless debugging ex-
perience. TheVisual Studio AddIn includes a set of com-
mon diagnosis tools based on G2, including event naviga-
tion along edges in all levels of graphs (calledgwalker),
as well as a set of wizards focusing on specific visual-
ized diagnosis tasks, such as error log analysis, critical
path analysis, and performance regression analysis, as
discussed in Section 3.2. Following are two showcases
from our experiences.
Slower job. When developing G2, we found that query
processing time became 60 times slower after minor code
changes. To investigate, we applied G2 for a machine-
level aggregation with critical-path analysis on a forward
slice of a query job. The result showed that most of the
processing time was spent on machinesrgsi-10. We then
zoomed into a thread-level execution graph, and per-
formed a graph diff with its counterpart from the same
run in the previous day (before code changes were ap-
plied). Figure 10 depicts the diff result, which shows that
thread 8772 has the largest deviation between the two
jobs in terms of execution time. We further zoomed into
the component level and then function level execution
graphs in that thread, and found that the largest deviation
happened in theAcquireRowById function which reads a
row from a local table using the primary key. Our further
investigation revealed that the table did not have a proper
index, the result of a bug we introduced in Transformer
that caused index creation to fail. This kind of perfor-
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Figure 10: Thread level performance regression diff.

mance regression problem is common in our experiences
and a hierarchical diff analysis between two similar tasks
is often effective in identifying root causes.
Failed write. We have used G2 to investigate root causes
of error logs in SCOPE/Dryad. One case is shown in Fig-
ure 11. The error log in the underlying distributed storage
system reported that a write request to a chunk serverc1
at time 21:27 failed. Using G2, we managed to find its
root cause through several steps, marked in Figure 11.

1. We computed a backward slice starting from the
error log entry and listed the warning and error entries
ordered by time (OrderBy). A warning log entry showed
up in the disk IO module, indicating that a chunkx was
marked as deleted. However, we were not able to figure
out why this happened based on the information in this
backward slice.

2. We wrote aWhere query for the most recent logs
on the same machine who contain keyword “chunkx”,
trying to connect the missing edges which may tell why
chunkx was marked as deleted. The query returned an
eventB indicating that at time 21:17 a background thread
marked this chunk as deleted.

3. We usegwalker to navigate the logs on the graph
from eventB, and found an eventC indicating that the
meta serverm1 sent a delete request toc1 because it
found that chunkx no longer belonged to any file stream.

4. To locate the origin of the write request toc1 on
presumably deleted chunkx, we aggregated the back-
ward slice rooted at eventA at process level and found the
write request came fromc3, and propagated byc2, where
c1, c2, and c3 formed a replication group forx. A further
drill-down of the logs onc3 showed thatc3 restarted at
21:27. During its replication log replay, it found an in-
complete local chunkx and issued an empty write request
to sync data from other replicas (c1 andc2).

5. Trying to understand whyc3 did not receive the
delete request from meta server for chunkx, we ran a
process level aggregation on the forward slice from event
C, and found thatm1 sent a delete request toc3 at time
21:25, butc3 was not online at that time. This revealed
the root cause.

This interactive diagnosis process involved gwalker,

slicing (at a specific layer), aggregation, and relational
queries in G2, and is guided with human expert knowl-
edge. It is worth pointing out that G2, as any diagno-
sis tool, is not intended to replace human completely.
Rather, its value lies in its ability to allow users to find
the right information efficiently.

Implicit dependencies. The backward slice in step 1 of
the Failed Write diagnosis did not contain all the interest-
ing events for us to find the root cause, due to implicit de-
pendencies (through chunkx), which are not captured by
G2. This is a common limitation in causality-based ap-
proaches. We managed to connect the dots through a re-
lational query in this case. In our performance diagnosis
experience, we also found a lot of problems caused by re-
source contention or interference, and again such causal
relations are not modeled by G2. In the future, we plan to
incorporate some interference analysis techniques (e.g.,
[25]) to introduceinterference edges into our model.

Customized slicing computation. We found some slices
were fairly large and took a long time to compute. In
many cases, users do not need all the information in a
slice. To better control the cost, G2 provides three addi-
tional parameters to theSlicing operator: maximum slice
radius (hops starting from the root event), maximum net-
work hops, and a customizable edge filter which decides
whether the computation should continue following this
edge for a bigger slice. Our experience shows these pa-
rameters can greatly improve the productivity, especially
when people are familiar with their target systems.

Deployment and interference. The data placement has
three reasonable choices as we see: data on each ma-
chine, on one dedicated machine per pod (in which the
machines share a same uplink), and on a single machine.
We did not run the second option (in a real data center)
yet, and our scalability study above touched on diagno-
sis performance vs. number of machines. Our belief is
that the second option is more suitable for a real deploy-
ment to minimize interference, while the other two can
be used in testing environments depending on the size of
the setup.
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Figure 11: Diagnosis process for the failed-write scenario.

7 RELATED WORK

The design of G2 draw inspirations from a great num-
ber of previous works. We discuss those in three cat-
egories: execution modeling, distributed execution en-
gine/storage, and diagnosis platform.

Execution Modeling. G2 captures overall system behav-
ior in a system execution graph with the help of anno-
tation and instrumentation. It is clearly related to path-
based analysis [14, 13, 26, 7, 8, 27], where a path is
often defined as a sequence of events that is triggered
by a client request. Path instances can either be col-
lected through annotation [14, 13, 26] and schemas [8]
provided by developers, or statistically inferred from
inter-machine communications [7]. A variety of analy-
sis can be enabled on path instances. For example, Mag-
pie [8] aims to analyze workload models from path in-
stances; PinPoint [14, 13] uses statistical methods to
find components that are highly correlated to failed re-
quests; Pip [26] checks these instances against specifica-
tions of expected system behavior defined by users. Path
instances correspond to forward slices from the points
where client requests are submitted in a system execu-
tion graph—G2’s model is general in that slicing can
be in both directions from any point. Technically, path-
based techniques [14, 13, 26, 7, 8, 19] could be applied
on these forward slices and therefore integrated into G2.
We plan to investigate this feasibility in the future. X-
Trace [19, 18] is similar to G2 as it captures system be-
havior as task trees, and it tends to store the information
in a service like OpenDHT to allow further distributed
processing.

A large body of work focuses on diagnosing dis-
tributed systems using purely legacy logs. For example,
Wei et al. [29] use machine learning to mine console logs
to detect large-scale system problems, and SherLog [31]
uses a constraint solver with information from a log to
rebuild system execution flow that produces the same
log. While no annotation or schema input from users
are needed in those systems, there is usually a trade off:

a machine-learning approach [29] involves sufficient art
to ensure accuracy, while recovering information using
constraint solving [31] faces scalability challenges.

Our slicing concept is inspired by program slic-
ing [6] in program analysis. Hierarchical aggregation is
related to hierarchical dynamic slicing [28], although
the underlying techniques are different. Program slic-
ing captures fine-grain data/control dependencies among
variables/statements, and semantic hierarchy inside pro-
grams, while G2 captures dependencies at a coarse gran-
ularity and resorts to approximation for scalability.
Distributed Execution Engine and Storage. G2 hinges
on its graph traversal engine to operate on huge execu-
tion graphs, often composed of millions even billions
of vertices. Pregel [24] is a system for general large-
scale graph processing. Tailored for execution graphs and
graph traversal, G2 adopts a batched asynchronous model
rather than a bulk synchronous model in Pregel; it ex-
poses a partition-oriented interface, rather than a vertex-
oriented one in Pregel.

Other distributed computing engines have also been
applied to specific computation on large graphs. Dis-
tributed execution engines such as MapReduce [16] and
Dryad/DryadLINQ [22, 30] have been applied to com-
pute PageRank [4] on a web graph. Recently, MapRe-
duce Online [15] is also used for interactive big data
analysis. G2 also leveragesMapReduce as the basic con-
struction primitive to implement the diagnosis operators.
Besides, it employs dedicated graph traversal primitive
to reduce the query latency. G2 partitions a graph into
partitions and stores partitions on different machines.
Distributed storage systems, such as key/value stores
or table-based stores, have been studies extensively, al-
though not for storing large graphs in particular. Re-
cent examples include Cassandra [1], Dynamo [17], and
BigTable [12]. G2 adopts the similar approach, and it co-
locates the execution to the partitions so as to reduce the
storage access latency.
Diagnosis Platform. Several previous diagnosis tools
have also leveraged the power of distributed systems.
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Cloud9 [10] has pioneered the concept oftesting as a
service. In particular, it shows a symbolic execution test-
ing engine that can be parallelized in a cloud. We share
the same vision and believe G2 can enable diagnosis as
a service. Wei et al. [29] parallelized their algorithm for
learning legacy logs on Amazon EC2 with Hadoop [21].

Dapper [27] is a tracing framework designed for low
overhead, application transparency, and ubiquitous de-
ployment. Trace data are organized in a Dapper trace
tree, where each node represents a basic unit of work
called a span. Each trace is stored in BigTable. It also of-
fers a programmatic API, as well as an annotation API.
Due to its more restricted trace-tree model, it does not
support graph-traversal or any of the operators in G2.
DTrace [9] is another tracing framework that supports
on-demand instrumentation of distributed systems. It al-
lows customized predicates and aggregation functions
via a scripting language. The aggregation is applied to
a set of flat trace records, which is different from G2 as
the later applies aggregation to a graph.

8 CONCLUDING REMARKS

Execution graphs capture runtime behavior of distributed
system executions. These graphs are unique in their value
for distributed-system diagnosis and in their distinctly
different characteristics compared to well-known social
and web graphs. G2 makes those graphs useful with new
graph operators and with query support, and makes graph
processing efficient with a distributed engine. By doing
so, G2 becomes an effective tool for distributed-system
diagnosis and at the same time advances the state of art
in distributed large-scale graph processing.
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