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Abstract fragile. In the past few years, disk-based backup systems

have gained significant momentum, and today most en-

Modern deduplication has become quite effective a . . . . :
S . . - erprises are rapidly adopting such solutions, especially
eliminating duplicates in data, thus multiplying the ef- .
when the data volume is moderate.

fective capacity of disk-based backup systems, and en- o f th : f bli h
abling them as realistic tape replacements. Despite these ne of the most important factors enabling the re-

improvements, single-node raw capacity is still mostIyC,ent “Zuct:jcess" of d;sk—ba?ed baCk“P IS hctmgupllca— q
limited to tens or a few hundreds of terabytes, forcingt'on( edupe”)—a form of compression that detects an

users to resort to complex and costly multi-node Sys_ehmmates duplicates in data, therefore storing only a sin

tems, which usually only allow them to scale to single-gIe Cgpg Ofk each data unit. By USiTg ldec:]upef;n a disk-
digit petabytes. As the opportunities for deduplication ef ased backup system one can multiply the effective ca-

ficiency optimizations become scarce, we are challengeaaCIty by 10-50 times, rendering the system a realistic

with the task of designing deduplication systems thaf:@Pe replace_ment, whose 903t is on par with tape—bas_ed
will effectively address the capacity, throughput, man-SYStems, while also 1) making backup data always avail-

agement and energy requirements of the petascale agefabIe online (for indexing, data mining, etc.), 2) enabling

In this paper we present our high-performance deOIu_ef'fective remote backups by minimizing network traffic,

plication prototype, designed from the ground up to Op_and 3) reducing client side 1/0 overhead by eliminating
timize overall single-node performance, by making thethe need to read unchanged, previously backed-up files.

best possible use of a node’s resources, and achieve threeThe explosn_/e ljncrease mr;che amount of data corpora-
important goalsscaleto large capacity, provide good tions are required to store, however, puts great pressure

deduplication efficiencyand near-raw-diskhroughput on the storage and backup systems, creating_immediate
Instead of trying to improve duplicate detection algo-demand for new ways to address the capacity, perfor-

rithms, we focus on system design aspects and introduc@ance and cost challenges, and generally increase their

novel mechanisms—that we combine with careful imple-OVerall effectiveness. o _
mentations of known system engineering techniques. In | n€ effectiveness of a deduplication system is deter-
particular, we improve single-node scalability by intro- Mined by the extent to which it can achieve three mu-
ducingprogressive sampled indexiagdgrouped mark-  {ally competing goalsdeduplication efficiencyscala-
and-sweepand also optimize throughput by utilizing bility, andthroughput Deduplication efficiency re_fers to
an event-driven, multi-threaded client-server intexaeti hOW well the system can detect and share duplicate data
model. Our prototype implementation is able to scale tgiNits—which is its primary compression goal. Scalabil-
billions of stored objects, with high throughput, and very 1Y réfers to the ability to support large amounts of raw

little or no degradation of deduplication efficiency. storage with cor!sistent performance. Throu_ghput refers
to the rate at which data can be transferred in and out of

the system, and constitutes the main performance metric.
1 Introduction All three metrics are important. Good dedupe effi-

ciency reduces the storage cost. Good scalability reduces
For many years, tape-based backup solutions have donthe overall cost by reducing the total number of nodes
inated the backup landscape. Most of their users havsince each node can handle more data. High throughput
been eager to replace them with disk-based solutions thas particularly important because it can enable fast back-
are faster, easier to use (search, restore, etc.) and leaps, minimizing the length of a backup window. Among



the three goals, it is easy to optimize any two of them,ment, and end-to-end throughput optimization. We con-
but not all. To get good deduplication efficiency, it is nec- tribute new mechanisms to address dedupe challenges
essary to perform data indexing for duplicate detectionand combine them with well-known engineering tech-
The indexing metadata size grows linearly with the ca-niques in order to design and evaluate the system consid-
pacity of the system. Keeping this metadata in memoryering all three dedupe goaRrogressive sampled index-
would yield good throughput. But the amount of avail- ing removes scalability limitations imposed by indexing,
able RAM would set a hard limit to the scalability of the while serving most lookup requests @(1) time com-
system. Moving indexing metadata to disk would removeplexity from memory. Our index uses sampling to per-
the scalability limit, but significantly hurt performance. form fine-grained indexing, and greatly improves scala-
Finally, we can optimize for both throughput and scala-bility by requiring significantly less memory resources.
bility, as in regular file servers, but then we lose dedupli-We address the problem of reference management by in-
cation. Achieving all three goals is a non-trivial task. ~ troducinggrouped mark-and-sweep mechanism that
Another less obvious but equally important problem isminimizes disk accesses and achieves near-optimal scal-
duplicate reference management: duplicate data sharirgpility. Finally, we presenta modular, event-driven, ctie
introduces the need to determine who is using a particupipeline design that allows the client to make the most
lar data unit, and when it can be reclaimed. The computaof its resources and process backup data at a rate that
tional and space complexity of these reference managesan fully utilize the dedupe server. As a result, our proto-
ment mechanisms grows with the amount of supportedype can achieve high backup (1 GB/sec for unique data
capacity. Our field experience, from a large number ofand 6 GB/sec for duplicate data) and restore throughput
deduplication product deployments, has shown that th¢l GB/sec for single stream and 430 MB/sec for multi-
cost of reference management (upon addition and deleple streams) and good deduplication efficiency (97%), at
tion of data) has become one of the biggest real-worldhigh capacities (123 billion objects, 500 TB of data per
bottlenecks, involving operations that take many hours25 GB of system memory).
per day, and force a hard limit to scalability. The rest of the paper is organized as follows: Seéfion 2
A lot of the research in the area has focused on optigives a detailed description of the major challenges we
mizing deduplication efficiency and index management,had to address. In Sectibh 3 we describe how we address
without being able to sufficiently boost single-node ca-them through our prototype’s novel mechanisms, and in
pacity: with the current state-of-the-art a single node isSectiorL 4 we present our evaluation results.
limited to a few tens, or hundreds, of terabytes—which is
far from sufficient for the petascale. Consequently, scal-,
ability has been addressed mostly through the deploy2 Challenges
ment of complex, multi-node systems, that aggregate th% .
limited capacity of each node in order to provide a few -1 Indexing
petabytes of storage at very high (acquisition, managemost deduplication systems operate at the sub-file level:
ment, energy, etc.) cost. Surprisingly, the problem of ref-3 file or a data stream is divided into a sequence of fixed
erence management performance is largely ignored.  or variable sizedegmentsFor each segment, a crypto-
As the rate at which data are generated is rapidly ingraphic hash (MD5, SHA-1/2, etc.) is calculated as its
creasing, the pressure for high-performance, scalable arfthgerprint (FP), and it is used to uniquely identify that
cost-effective deduplication systems becomes more eviparticular segment. Aingerprint indexis used as a cat-
dent. We advocate that single-node performance is of keglog of FPs stored in the system, allowing the detection
importance to next-generation deduplication systems: byf duplicates: during backup, if a tuple of the form
making the most of a single node’s resources, it is posFP, locationon_disk > exists in the index for a particular
sible to build a high-performance deduplication systemFP, then a reference to the existing copy of the segment
that will be able to scale to billions of objects. Basedis created. Otherwise, the segment is considered new, a
on our field experience, we know that such a systencopy is stored on the server and the index is updated ac-
would be valuable to a very large number of users (e.g.cordingly. In many systems, the FP index is also crucial
small/medium businesses) where simplicity is also a togfor the restore process, as index entries are used to locate
priority. Additionally, we believe that improving single- the exact storage location of the segments the backup
node performance is essential for multi-node systems asonsists of.
well, since a lot of our techniques can be used to provide The index needs to have three important properties:
more efficient building blocks for these systems, or evenl) scale to high capacities, 2) achieve good index-
collapse them into a single node. ing throughput, and 3) provide high duplicate detection
This paper presents@mplete single-node dedupli- rate—i.e., high deduplication efficiency. Table 1 demon-
cation system that covers indexing, reference managestrates how these goals become very challenging for a



ltem Scale Remarks be updated and some may not. Complicated transaction

Physical capacitf C€=1,000TB rollback logic is required to make reference counts con-
Segment siz& S=4KB sistent. Moreover, if a segment becomes corrupted, it is
Number of segmenty | N = 25010 segs| N=C/S important to know which files are using it so as to re-
Segment FP size E=228B cover the lost segment by backing up the file again. Un-
Segment index size | =5,500 GB | =N=E fortunately, reference counting cannot provide such in-
Disk speedz 400 MB/sec

formation. Finally, there is almost no way to verify if the
reference count is correct or not in a large dynamic sys-
Table 1. An example system configuration, illustrating some of the tem. Our field feedback indicates that power outages and
challenges involved. data corruption are really not that rare. In real deploy-

ments, where data integrity and recoverability directly

Petascale system. If the system capacity is 1 PB, and thgiect product reputation, simple reference counting is
segment size is 4 KB (for fine-granularity duplicate de'unsatisfactory.

tection), indexing capacity will need to be at least 5,500 Maintaining a reference list is a better solution: it is

GB.tO suppqrt all 250 billion que_cts_ in the system. .Suc.himmune to repeated updates and it can identify the files
an index is impossible to maintain in memory Storing it

; that use a particular segment. However, some kind of log-
on disk, however, would greatly reduce query through- .~ =7 - )
. . ging is still necessary to ensure correctness in the case of

put. To achieve a rate of 400 MB/sec, would require the . : :
: lost operations. More importantly, variable length refer-
index—and the whole dedupe system for that matter— . X
. : ence lists need to be stored on disk for each segment.

to provide a query service throughput of at least 100
Kops/sec. Trying to scale to 1 PB by storing the index
on disk would make it impossible to achieve this level
of performandg Making the segment size larger (e.g.,
128 KB) would make deduplication far more coarse and®

severely reduce its efficiency, while still requiring nodes  AAnother potential solution is mark-and-sweep. Dur-
than 172 GB of RAM for indexing. ing the mark phase, all files are traversed so as to mark

gthe used segments. In the sweep phase all segments are

It becomes obvious that efficient, scalable indexing i " )
a hard problem. On top of all other indexing challenges SWePt and unmarked segments are reclaimed. This ap-

one must point out that segment FPs are cryptographieroach is very resilient to errors: at any time the pro-

hashes, randomly distributed in the index. Adjacent in-C€SS €an simply be restarted with no negative side ef-

dex entries share no locality and any kind of simple reagfects. Scalability, however, is an issue. Gomg. back to the

ahead scheme could not amortize the cost of storing in€x@mple of TablBl1, we would need to deal whiti 250

dex entries on disk. billion segments. If a segment FPEs= 22 bytes, that
would bel =N * E = 5,500 GB of data. If we account

2.2 Reference Management for an average deduplication factor of 10 (i.e., each seg-

» ment is referenced by 10 different files), the total size
Contrary to a traditional backup system, a dedupe systerg fijes that need to be read during the mark phase will

shares data among files by default. Reference managgg 55 000 GB. This alone will take almost 4 hours on a
mentis necessary to keep track of segment usage and rgn \i/sec disk array. Furthermore, marking the in-use
claim freed space. In addition to scalability and speed, repiis tor 250 billion entries is no easy task. There is no
liability is another challenge for reference managementway to put the bit map in memory. Once on disk, the bit

If a segment gets freed while it is still referenced by files,map needs to be accessed randomly multiple times. This
data loss occurs and files cannot be restored. On the othgfs, takes significant amount of time. One might want
hand, if a segment is referenced when it is actually Nqq mitigate the poor performance of mark-and-sweep by
longer in use, it causes storage leakage. ~_ doing it less frequently. But in practice this is not a vi-
Previous work|[12, 19] mainly focused on indexing gple option: customers always want to keep the utiliza-
and largely ignored reference management. Some recefih, of the system close to its capacity so that a longer
work [4, |18] started to acknowledge the difficulty of hisiory can be stored. With daily backups taking place,
the problem. But, for simplicity, only simple reference gygtems rarely have the luxury to postpone deletion op-
counting was investigated without considering reliapilit o 5tions for a long time. In our field deployment, deletion
and recoverability. Reference counting, however, suffergs qone twice a day. More than 4 hours in each run is too
from low reliability, since it is vulnerable to lost or re- much. In a large production-oriented dedupe system ref-
peated updates: when errors occur some segments M@Yence management needs to be very reliable and have
10ur measurements show that even high-end SSDs cannotachie@00d recoverability. It should tolerate errors and always
more than 60 Kops/sec ensure correctness. Although mark-and-sweep provides

Block lookup speed goal 100 Kops/sec Z/S

Every time a reference list is updated, the whole list (and
possibly its adjacent reference lists—due to the lists’
variable length) must be rewritten. This greatly hurts the
peed of reference management.




Server | File Manager ! The server side component consists of two main
! A [ &t | modules—theFile Manager and the Segment Man-
ager—that implement all the deduplication and backup
‘ T || management logic.
The File Manager KM) is responsible for keeping
1 ! track of files stored on the deduplication server. The FM
manages file information using a three level hierarchy,
‘ visible in Figure[1. The bottom level consists files
\Sﬂ 4 f# SH;S*F #j L1 #Sf B #;0 ut Jspé each represented by a set of metadata and identified by a
D Index B file FP, calculated over all segment FPs that the file con-
SRR EEEE R e ‘ sists of. The middle level consists lodickupsthat group
Figure 1: Client and deduplication server components. The senrarco  files belonging to the same backup session. At the top
ponents may be hosted on the same or different nodes. level, multiple backups are aggregated tmaakup group
allowing the FM to perform coarse-granularity tracking
these properties, its performance is proportional to theyf file/backup changes in the system, so as to assist our

‘
! |[packup1] [Backup2| [Backup3| [Backups]| !

Client

Segment Manager :

)
h
| ‘Container 1‘ ‘Con(ainer 2‘ ‘ Comainer# ‘ Container 4‘ 3
'
I

capacity of the system, thus limiting its scalability. reference management mechanism.
] . The Segment Managesl) is responsible for the in-
2.3 Client-Server Interaction dexing and storage of raw data segments, and may run on

Even if we solve the indexing and reference managemerit'® same or a different server than the FM. Segments are
problems, high end-to-end throughput is not guaranteecstored on diskin large (e.g., 16 MB) storage units, called
An optimized client-server interface is necessary to reaFontainers Containers consist of raw data and a cata-
the benefits of deduplication. The typical dedupe client09 which lists all FPs stored in the container. All disk
performs the following steps during backup: 1) read dats2ccesses are performed in the granularity of containers.
from files, 2) form segments and calculate FPs, 3) sentoring adjacent segments in the same container greatly
FPs to the server and wait for index lookup results, andmpProves dedupe performance, by reducing container /O
4) for each index miss, transmit the relevant data to@nd by improving indexing efficiency (as discussed in
the server—otherwise create references to the existinéedio@l)- The SM also incorporates the dedupe in-
segments. This process may suffer from three differenfl€X, and updates it when segments are added/removed.
types of bottlenecks. First, reading files from disk is an The client component reads file contents or receives
I/0-bound operation. Second, calculating cryptographicdata streams (e.g., data frotar), performs segmenta-
hashes is a very CPU-intensive task, and the client majon, and calculates segment FPs. After querying the SM
not be able to compute FPs at the necessary rate. Fina”wdex, the client creates references to the existing copies
high latency and low communication throughput may be-0f FPs located in the SM, and initiates data transfers for

come the main bottleneck for overall performance. new FPs. Once a file has been fully processed, the File
Manager is updated with file metadata.

. Without loss of generality, we use fix-sized, 4 KB seg-
3 Prototype Design ments, for fine-granularity dedupe—although none of the
mechanisms relies on this assumption.
3.1 Goals and System Architecture

We set our performance goals as follows: 3.2 Progressive Sampled Indexing

g _ - Most dedupe systems, when performing backup restore,
e Scalability: store and index hundreds of billions of rely on the index—or a similar catalog-like structure—

segments. in order to determine the disk location of each segment.
e Deduplication efficiency best-effort deduplica- This forces the strict requirement for at least @uen-
tion: if resources are scarce, sacrifice some deduplete indexcontaining location information for all FPs,

plication for speed and scale. that the system will have to maintain and protect against
e Throughput: near-raw-disk throughput for data crashes, corruption etc., because errors cannot be toler-
backup, restore, and delete. ated. If a segment’s disk location cannot be determined

due to index failure, the whole file or backup gets cor-
To that end, we have implemented a prototype of ourupted. Maintaining such a data structure is a difficult
scalable duplication system aiming to validate the effec-and resource consuming task, that almost certainly im-
tiveness of the proposed mechanisms. Our implementgacts system scalability and performance, since the index
tion uses C++ and pthreads, on 64-bit Linux, and it istypically needs to be stored both in memory, for perfor-
based on the architecture shown in Figure 1. mance, and on disk, for durability.



In order to address the indexing challenges and scal is very likely thatA andB will reappear in order in the
to billions of objects with high performance we had to future, in which casé will have seeded pre-fetching of
remove this restriction by introducirdjrectly locatable its container catalog, resulting in a cache hitBor
objects when a file is stored in the system, file seg- Container catalog pre-fetching can be extremely effec-
ment location information is stored with the file meta- tive in improving the deduplication efficiency of a sam-
data, therefore removing the need to consult the index fopled index. However, pre-fetching introduces a minimum
the exact location of file segments. For example, iffile sampling rate: at least one FP per container (e.g., the
consists of segments with FRsB andC, stored at disk  first FP stored in the container) must be in the mem-
locations 1, 2 and 3 respectivefywould be represented ory index as a hook, in order to seed pre-fetching. Be-
by the list’A;1,B,2,C,3"—instead of just A/B,C". The  cause of this, if container sizeksMB, thenR > Ryin =
increased file metadata size is not a problem, since meta&/ (K x 219) and, subsequently, scalability is no longer
data are stored on disk, while the indexing freedom we‘unlimited”: the maximum supported capacity is now
get in exchange is extremely valuable. C < (M xK %210 /E. For 4 KB segments and 16 MB

By decoupling indexing and restore we no longer neectontainers, at least 1 out 4096 FPs needs to be sampled,
to maintain a full index. Instead, we introdusampled and with 64 GB of RAM, as in the example of Table 1,
indexing that is based on the observation that given cerC < 47,662 TB—which is still very high.
tain amounts of memory and raw capacity, we can cal-
culate the index size, and determine the number of enpeduplication efficiency. Although the combination
tries that need to be dropped. In particularvifis the  of sampling and FP pre-fetching can often yield up to
amount of memory available for indexing (in GBJis  100% duplicate detection, random eviction of cache en-
the dedupe segment size (in KE)js the memory entry  tries may reduce deduplication. Using a simplified model
size (in bytes), an€ is the total supported storage (in we can estimate the dedupe efficiency of the system.
TB), then we can SuppoI\ﬂ/E billion entries, while the  Each container Cata|og contains at mdgt* 210)/S:
system consists of a total 6f/ Shillion segments. There- 1/Rmin = Tmin €ntries. If we want to achieve deduplica-

fore, if we assume a sampling peridd signifying that  tion efficiencyf%, and we suffex misses from one con-
we maintain “1 outl” fingerprints in memory, we can tainer, then:
define a sampling rat® as follows:
f/100=1— (X/Tmin) = X = Tmin* (1 — (f/100)).
R=1/T=(M/E)/(C/S)= (M+S)/(ExC) () /100 7 /) == T (L=(1/200)

. . If a particular container suffers one eviction during a
In the example of Tablg 1, using 22 bytes per index entry, P g

. ; ~“Jlarge time frame (most likely scenario, especially when
xghciﬁguspepgoﬂeﬂtsea?g ?)? (?a?ao\];vri?; r:(;gr:]%r”':;?;t'ggc; fLRU is used), then alt misses will fall between two con-
1 (... a full index). Scaling to 1,000 TB, would require secutive hooks hitting on the index, and therefore:
a sampling rate of 0.0116—i.e., insert in the index one | _ 1/R=x+1=T = Tmin* (1— (f/100))
out of 86 FPs. Using an 8 KB segment, we could double
the raw capacity, or double the rate t¢4B, sacrificing = (E%C)/(S¥M) = Tmin* (1— (f/100) +1  (2)
some dedupe accuracy for higher index density. Increas-
ing the indexing capacity of the system by adding moregjng Equatioi2 we can calculate that in the example
RAM is rewarded with higher sampling rates (i.e., better Table[1, with 64 GB of memory, the deduplication
dedupe efficiency), while increasing only the storage Ca'efficiency will be f = 97.9%. Alternatively, for a given

pacity results in a lower sampling rate, but this is often s et dedupe efficiency, we can calculate the necessary
acceptable, in return for “infinite” system scalability. | -|,es to achieve it: for example, if we waht> 95%,

3.2.1 Dedupe efficiency: pre-fetching andand giverE, Cands, the amount of memory required is
caching. M > 26.7 GB.

+1=

Since “1 out of T” FPs is inserted in the index, index : :
hits—and, consequently, dedupe efficiency—would be3'2'2 Progressive Sampling.
reduced by a factor of. However, when a lookup oper- A simple, yet important, optimization to sampled index-
ation hits on a sampled FP (also referred to as a “hook”)ing is based on the observation that Equafiibn 1 is using
we locate the container it belongs to and pre-fetch allthe total storage capacity of the system, and, therefore,
FPs from that container’s catalog into a memory cachecalculates the value d®t, required to support all/S

It has been shown [19] that the likelihood of subsequenbillions of objects. However, at any given time, only the
lookups hitting on the FP cache is high, due to spacial loamount of data that are actually stored in the system need
cality: if hook FPA was followed by dropped FB, then  to be indexed, which allows us to utilizepogressive



sampling ratethat calculate® using the amount of stor-  all cache buckets. This imposes less of a penalty to con-
ageused as opposed to the maximum raw storage. Ini-tainers with entries i, but may lead to poor deduplica-
tially we setR=1, and gradually decrease it as more stor-tion if the threshold is high, since a particular container
age gets used. In our working example, with 64 GB ofmay not be pre-fetched even though many of its entries
RAM, R=1 canindex 11 TB of storage. As we approachhave been evictec€Container LRUwill evict the entries

the 11 TB limit, we can seéR = 0.5 and down-sample the of the least recently pre-fetched container. If that doés no
index (e.g., drop index FPs withP mod2 +# 0), thus  free up space iQ, the process is repeated. Although this
doubling the indexing capacity. Eventually, as usage apis the policy that yields maximum dedupe efficiency, it is

proaches 1,000 TBR will converge toRq: = 0.0116. also the one with the most overhead. Our default policy
is immediate eviction, which provides good deduplica-
3.2.3 Implementation tion efficiency, and performance only slightly lower than

. . . eviction by threshold.

T e a3 In orer t provce hih decpe effcincy afer sy

we call dhash optimized for high performance ar;d of. r%em repoots or crashe_s, we must ensure that a relatively

ficient memory usage. Thl GB of memory available recent index _checkp0|_nt is st_ored pers_lst&tBuc!(et

for indexing are divided to fixed size buckets (1 KB change-tracking combined with our pointer-free imple-

by default). allowing us to have a maximum Wf— mentation make checkpointing efficient (only a few sec-
y ! 9 onds per checkpoint). Our current policy creates check-

M /bucketsizein_KB millions of buckets. No pointers . .
. . oints every few minutes, and on system shutdown.
are used in a dhash structure, and all operations use OiP—

sets, allowing us to 1) perform custom memory managessp indexing. Although sampling provides an effi-

ment (bucket slab allocator), 2) get memory savings bycient way around scalability restrictions imposed by
replacing each 8-byte pointer with 6 bytes of offset datamemory limitations, we wanted to also provide a way to
and 3) make the dhash easily serializable (e.g., whefmprove scalability even with modest amounts of mem-
checkpointing to disk at system shutdown). ory, and without having to resort to very low sampling

If a dhash is used at the role of the index, we aimrates. To that end we have also implemented a (persis-
to accommodate as many sampled FP entries as pogent) SSD-based version of our sampled index. Sam-
sible. We utilize 2 buckets for the hash table, where pled fingerprints are stored on sorted SSD blocks and
b=1logz(Y *2%°) —k. The system parametiedetermines  all available memory is used for three performance op-
the number of buckets reserved for collision handling.timizations: 1) create an SSD summary data structure
Each index entry contains a partial FP (sinceltheast ~SSDsum 2) maintain a Bloom Filter for the SSD index,
significant bits of the FP are encoded in the hash tableind 3) maintain an FP cache of pre-fetched containers—
position), and the container number the FP belongs tosimilar to that used for the memory index. TR&Dsum
For simplicity we use 128-bit MD5 (which is not strong data structure keeps track of the first FP in each of
enough for production, but adequate for our testing purthe SSD’s (sorted) blocks, thus allowing us to perform
poses), leading to a typical entry size of 18 b§tésach  any lookup with at most one SSD block read: when a
index dhash also utilizes a Bloom filter, to avoid unnec-lookup(X)operation is performedk may be found in the
essary lookup operations, which greatly improves perforcache, or it may be found by reading the SSD black
mance. whereSSDsun{i) < X < SSDsunfi +1). The SSD in-

A cache dhash is optimized mainly for performance:dex is read-only, eliminating the need for shared lock-
it will use all buckets for the hash table, and handle col-ing during accesses. All SSD index updates are cached
lisions by running a cache eviction algorithm. A cacheand logged. Eventually, index updates are performed in
dhash can employ one of three eviction policies wherbatches (and with the SSD exclusively locked): for our
collisions for a particular bucke® occur: Immediate 128 GB SSD a full update takes less than 9 minutes, and
evictionwill empty Q, and consider all the containers of we can afford to update the SSD many times per day.
Q's previous entries as evicted from the cache. This pol-
icy is very fast since it performs lazy eviction of FPs, al- 3.3  Grouped Mark-and-Sweep

lowing for subsequentlookups to hit on those entries. Onp o chajlenge in reference management, as discussed in
the downside, this policy penalizes multiple containers a@;ectio@, is to ensure reliability while ensuring that

once Eviction by thresholds similar to immediate evic- o roference management mechanism is also both scal-
tion, but the containers whose entries are being removegbIe and fast enough to keep up with the backup speed.

from Q will not be_con3|dereq as evicted until a certain A mark-and-sweep approach is very reliable, but offers
percentage of their total entries has been removed from

3Notice that even if we lose all index index entries, corresmis
2With a stronger 160-bit hash, the entry size becomes 22 bytes  preserved.




have segments freed. In the example of Fiddre 2,
Groupl has files deleted and it has used containers
1 and 2. So we put these two containers in the sweep
list. The segments in other containers are either still
referenced by files in the unchanged groups (say
Group?2), or referenced by new files in new groups

Group 1
I

‘ Backup 1 Backup 2

L
Some files deleted

. (ST [T | ‘ A A (say Group3).
: [Contamer 1 ] [Contalnerz ] [Contalnerz ] [Contamer4 ] [Contamers ] .
¥ Containers 1o sweep 3. Merge, sweep, and reclaim freed spacé-or each

container in the sweep list, we merge the mark re-
sults of all groups using that container. If a segment
is not used, it can be reclaimed. In the example of
Figure[2, for Container 1, we merge (the old) G2
and (the new) G1, to determine potentially unused
segments. Similarly, we merge (the new) G3 and
(the new) G1, to determine potentially unused seg-
ments in Container 2.

Figure 2: Example illustrating the scalability of grouped mark-and
sweep.

poor scalability because it needs to touch every file in
the system. To address this challenge we propose the
grouped mark-and-swegisMS) mechanism, which is
reliable, scalable, and fast. The key idea is to avoid touch-
ing every file in the mark phase and every container in
the sweep phase. GMS achieves scalability because its
workload becomes proportional to the changes—insteae;

of the capacn)_/ ofthe syste_m. . old mark results (e.g., G2) can be reused, without having
_The operz_;\tlon of GMS is based on (_:hange-trackmqo re-generate them in every mark-and-sweep cycle. Each
W.'th'n the File Manager. As p_resented in Figlie 1, theset of mark results is stored and reused in the future, mak-
File Manag_er keeps track of flles_, backups, and baCkuﬁJng the mark phase scalable by avoiding to touch the ma-
groups. A file can be a regular f.'le’ a datapase backu ority of the unchanged backup groups. Secondly, unlike
s_tream, an email, et_c. A b"’_‘CkuD IS a set_of files, e.g., al onventional mark-and-sweep where all the entries are
files under a se'F of directories. The creation and contentgWept to determine the unused entries, in GMS we know
of backups are in th_e control of the user. .__which containers have reference removal operations, and
Backup groups aim to control the number of entries, o system only needs to sweep that subset of contain-

that GMS nee_ds to manage, and are created and MaRss. Therefore the majority of containers in the system
aged by the File Manager. When backups are small, We e usually not touched in the sweep step.

aggregate mgltiple small backups to one bigger backup One drawback of GMS is that a group needs to be re-
group. The File Manager tracks changes to each baCkuR]arked even if just one file has been deleted from it. For-

group, and for (_each changed backup group, it furthe'iunately the overhead is surprisingly small: segments can
_tracks_whether files have been _added o or deleted frorBe marked at a rate of 26 GB/sec. Since most bitmaps are
it. During a GMS run, the following steps take place: not changed, there are little work in the sweep phase.
Overall, GMS makes mark-and-sweep scalable by
only touching the changed objects, while maintaining the
reliability of mark-and-sweep. If errors occur, the whole

. ; . rocess can start over and all operations are idempotent.
sume that File Manager's change tracking ShOWiinall the mark results (e.g., G1 and G2 for Container
that, since the last GMS cycle, we deleted some Y eg,

le o group Group aced some e togrup) 27 528 05 efrencelit o seqmenii e o
Group3, and made no modifications to Group2. In ) P '

this case we only need to touch files in baCkupmark results can give us a complete list of backup groups

that use that particular container. This limits the set of
groups Groupl and Group3. Usually, most backup . L

.. affected files significantly, and greatly enhances recover-
groups (e.g., Group2) are not changed and files in_, .". : .
those groups don’t need to be marked. The mark reab|I|ty. Otherwise, we would need to go through all files

sults of G1 and G3 are recalculated by traversing a"![r;ireersystem to determine which files are using that con-
files in Groupl and Group3 and recalculating G1 '
and G3 for all containers that have segments use®iscussion. An interesting issue related to reference
by those files. A group’s mark results, say G1, is amanagement is concurrent reference updates (data dele-
bitmap implemented as a file for each container.  tion) and data backup. In the example of Figlie 2,
2. Add affected containers to the sweep listOnly  Backup 5 may still be active when it gets marked, and
containers used by groups that have deleted filegfter all changed backup groups are marked, GMS deter-
need to be swept because only those containers mayines that segment can be deleted. If Backup 5 uses

As it becomes clear from the example of Figlie 2,
MS provides two important scalability benefits. First,

1. Mark changed groups. Only mark the changed
backup groups and do nothing for unchanged
backup groups. As an example in Figure 2, as-



backup uses deleted/non-existent segments. HYDRAs 1 sa @

tor [4] uses a read-only phase to freeze the system whil 2 @ @
- Lookup
= RPC Lookup  Store Store
reply RPC reply

updating segment reference counts. In practice, the vi
Figure 3: Client pipeline, consisting of five main event-handling

ability is dubious. On a busy system, there are always
some active backups. It is very unlikely to find a time
window when the system can be frozen. th .
) . reads connected using queues.
Our system uses an in-memory protection map to ad-
dress this problem: after GMS begins, all segments usegnqueues the updated request to the lookup gLiEue

by current active backups are protected by storing their The lookup thread. receives requests from LQ and

segment fingerprints in a protectlon_map N MEMONY.issues one single, batched, asynchronous lookup RPC to
GMS only deletes segments whose fingerprint is not i

th tocti Thi GMS b tain th "the server, incurring a single RPC round-trip for all 256
€ protection map. 1his way can be certain atFPs. Callback functio@B2 delivers the RPC reply and

segments in use will never ggt deleted. The protecnor?:reates references to the containers of the FPs that were
map grows while GMS is running and gets deleted ONC&5und on the server. If one or more FPs were not found,

GMS completes. This is another reason why GMS need&BZ enqueues the updated request in the store gi@ue
to be fast enough to prevent the protection map from The store thread receives requests from SQ, and

ésl\'ﬂng t(;? dTrl;(l:th ﬂ:g er?gvref[‘h-:; ?;glg?;?eg?ogr?nzspgm énsends raw data blocks to the back-end through one sin-
' 9 P P: gle, batched, asynchronous RPC. Callback funciiB8

can be done more frequently. ensures that the write operation was successful, and for-
3.4 Client-Server Interaction WarFis the last request for ea(;h file to the close q@e
Finally, close threa®, receives the final request from
Even with high-performance server components, itis im-cQ, performs cleanup, calculates file metadata, and up-
possible to achieve high throughput, unless the client igjates the File Manager.
able to push data to the server at a high-enough rate. cjient queues allow us to better understand system be-
To that end, our client component is based on an eventyayior. For instance, on a client with low hash calcula-
driven, pipelined design, that utilizes a simple, fully tjgn throughput, we can obser#Q to be full most of
asynchronous RPC implementation. the time, while low network performance will lead to
Our RPC protocol is implemented via message passt Q and SQbeing mostly full. In such cases, more than
ing over TCP streams or system IPC mechanisms (e.ggne threads can be used for each pipeline stage. By using

named pipes), depending on whether communication igyo store threads, for example, we can consume requests
remote or local. The TCP implementation utilizes mul- from SQat a higher rate.

tiple TCP connections to keep up with the throughput
requirements. All RPC requests are asynchronous and
batched in order to minimize the round-trip overheads4 Evaluation
and improve throughput. A client can register different
callback functions for each type of RPC. The callbackOur main test-bed is an 8-core Xeon E5450 at 3 GHz
functions are used to deliver the RPC results to the callewith 32 GB RAM, running Linux. Our 24 TB disk array
as they become available. consists of 12 disks, 2 TB each, and uses RAD(®
Based on our asynchronous RPC protocol, we havétripe all physical disks to a single logical volume.
implemented an event-driven client pipeline, presented We used two main data sets for testing. Our synthetic
in Figure[3, where each backup step is implemented as gata set consists of multiple 3 GB files, each with glob-
separate pipeline stage. ally unique data segments. Our second data set con-
First, the reader threald receives the backup sched- Sists of virtual machine images, which are a very com-
ule, reads large chunks of data (e.g., 256 segments), afdon real-world enterprise use-case, that takes advantage
enqueues requests to the hash que@ The hashing ©f deduplication. We use a VMware “gold” disk image
threadH dequeues requests from HQ, performs segmen(Y M0), hosting a Microsoft Windows XP installation,
tation for each data chunk, and calculates FPs. Calcuand created three additional versions oMM1, VM2,
lating cryptographic hashes is a computationally expenandV M3), each with incremental changes: VM1 is VMO
sive operation, and, in order to fully utilize multiple CPU With all Microsoft updates and service packs, VM2 is
cores, H employs MD5 worker threadsi, Ha, ..., Hn) 4RAID 0 is not recommended for a high-availability systemt bu
that calculate FPs asynchronously. Once a chunk’s segye ysed it to achieve maximum performance and mitigate thk di
ment FPs have been calculated, callback func@@i bottleneck—thus emulate a high-end array.

x between the time Backup 5 was marked and the time
that GMS deleted segmert data loss will occur as a nom " a |
t HQ




VM1 with a large anti-virus suite installed, and VM3 0T o — g T T LT T T T
is VM2 after the installation of various utilities (docu- Hoo
ment readers, compression tools, etc.). This data set ain
to measure the “real-world” dedupe performance of oul
system, using a file type of great importance for the en
terprise.

For both data sets we configured the system to us
a sampling rate oR = 1/101, which is low enough to
stress the system. For the synthetic tests performed ¢ so00-
our current test-bed, the index uses 25 GB memory tc 2000~
hold 1.23 billion FPs. With a sampling rate of 1/101, this 1000
is equivalent to a full index of 124 billion FPs, or 500 TB 0 3 64w 1 160 12 224 2%
of raw storage—given that our segment size is £IKB Number of concurrent backup streams
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Figure 4: Aggregate throughput for our synthetic data set, with vayy

4.1 Throughput number of concurrent backups. Our system is capable of 668B¢s
duplicate data backup, and close to 1 GB/sec for concuraskups of
4.1.1 Backup Throughput unique data. Dedupe efficiency is 97%, and we support 200 Jiage

. for every 10 GB of system memory (500 TB for 25 GB in this test).
Index throughput. Before performing any macro- Y y v ( )

benchmarks, we used micro-benchmarks to ensure that

the index can support our goals—e.g., in the exam- db . :
. ting th thet kload to th
ple of Table[l, at least 400 MB/sec. In all the micro- reastired by WITng the same Syninetic workioad o tne

. ) file system. For a single backup, the baseline through-

b_enghmtarlfs_ thet/'lndix ;:ould easnyt Qandle :he dey utis around 1 GB/sec. This is the maximum throughput

?'r:lg/rfzeg'zé?igr%%o upl remove cct)_s | 0€s no ﬁxcge f the storage system. The baseline throughput quickly
’ ’ ' cycies, Fespectively, even when Ingrops to around 300 MB/sec for storing multiple back-

. 0 ;
dex occupancy IS more than 979%. For |r_1$tance, ona ps concurrently because disk contention increases with
GHz CPU, and in the worst-case scenario where all in-

. o .~ . the number of concurrent backups.
coming FPs exist in the system (and the Bloom filter is b

of no help), the index can sustain a backup rate of around Backlng up the same data ;et (‘Unique data” in Fig-
975«T MB/sec, where T is the sampling period. For our Urel4) using our prototype achieves a steady throughput

. ' : .~ of about 950 MB/sec as we scale to multiple concurrent
test configuration] = 101, and the index can sustain a LT ;
backups, which is significantly better than the regular file
rate of about 98.5 GB/sec. . .
server. This is mainly because our prototype performs

Unique data: baseline vs. prototype. Figure[d shows segmentation on all incoming data, and manages the se-
the backup throughput using the synthetic data set. Wwaéalization of containers to disk (regardless of content
vary the number of concurrent backups, in steps of 1, gsource), therefore decreasing concurrent disk accesses.
16, 32, 64, 128 and 256, in order to evaluate the system’s

capability for concurrency. For consistency, all backupsPuplicate data backup throughput.  After backing up
consist of multiple 3 GB files that add up to 768 GB.  the unique data workload using our prototype, we backup

The unique data throughput test aims to measure théhe same files again (“Duplicate data - cold cache” line
prototype’s behavior in the absence of duplicates. Uniquén Figure[4). This time, all segments are duplicates, and
data can be significant when a client performs the ini-We aim to observe how our prototype performs when it
tial backup or a lot of changes have been made. Thi®nly needs to reference existing data, instead of physi-
test stresses the disk and the network systems as largally storing new data. This test mainly stresses the index
amounts of data need to be transferred. lookup and disk pre-fetching operations.

To get a sense of the performance of raw hardware, Initially, for low levels of concurrency, the penalty for
we first measured a baseline throughput. The baselingmall random disk reads, for container FP catalog pre-
throughput of the disk array (“Baseline” in Figure 4), is fetching, dominates performance. Throughput improves
— _ S steadily as we increase the level of concurrency and du-

Testing our system with a configuration that supports a rpaca plicate elimination pays off, with aggregate disk through-

ity of 500 TB per node may seem inadequate at first. One shadd k .
in mind, however, that 1) We are stressing the system by usiKg put reaChmg over 6.6 GB/sec for 64 concurrent backup

segments. Most systems use significantly larger segmetding to ~ Streams. When disk accesses are already random, con-
higher raw capacities. 2) This &ngle-nodecapacity with only 25 GB  current access doesn’t introduce more randomness. On

memory for indexing. As such, it is higher than that of mositegns o _
we know of (as presented in Sectiail4.4). Unfortunately wetdwve the other hand, concurrent accesses can fully utilize ev

access to servers with more memory or larger disk arrays sotast €Y _diSkS in the disk array. Thus the aggregate thr_OUgh'
higher capacities. put increases. After 64 concurrent streams, the disk ar-




Backup Unique Duplicates Duplicates CPU | Unique | 100% Duplicates| 100% Duplicates
streams data (cold cache) | (warm cache) cores| data (cold cache) (warm cache)
1 840 (-4.9%) | 699 (-26.4%) | 1,989 (12.9%) 1 347 354 356
4 992 (-0.5%) | 2,556 (-6.3%)| 6,326 (0.6%) 2 599 612 612
16 999 (1.9%) | 4,802 (-0.2%)| 11,992 (5.1%) 4 900 1,167 1,172
32 985 (0.3%) | 6,420 (1.3%) | 12,134 (5.3%) 8 907 1,983 2,004
64 984 (-0.2%) | 6,621 (0.1%) | 11,865 (3.3%) 14 925 2,373 2,485
128 988 (3.2%) | 6,315 (1.6%) | 11,755 (2.1%) Table 3 End-to-end backup throughput using a varying number of
256 955 (1.9%) | 6,041 (-1.1%)| 11,946 (12.3%) CPU cores. All numbers in MB/sec.

Table 2 We repeated the experiments of Figure 4 using the SSD index. ) ]
Results are in MB/sec. The percentages in parentheses somiich  include the cost of updating the SSD every time 65,536

faster/slower the SSD index is from the memory index. new sampled entries have accumulated. A less (more)

frequent SSD update policy would yield faster (slower)
ray’s capacity for pre-fetching is saturated and mild ef-throughput resuilts.

fects from concurrency overhead (index/cache locking,
disk accesses etc.) are becoming obvious: duplicate da@nd-to-end throughput. Our next test attempted to in-
backup throughput falls to 6 GB/sec and remains mostlylude client performance in our evaluation, in an end-
constant. to-end system test, using a single 25 GB backup stream
To verify our conjecture that duplicate data backupof unique segments. As presented in TdHle 3, we var-
throughput limitations are mainly due to disk bottleneckied the number of CPU cores dedicated to MD5 cal-
(container FP catalog pre-fetching) instead of CPU, weculation, and performed three tests for each configura-
backup the same files a third time immediately after thetion: an initial backup, a second backup of the same
second backup. In this case, many FPs are already in thaata with cold caches, and a third run with warm caches.
cache and fewer disk pre-fetches will be necessary. Thall backups were performed using a 16-core Intel Xeon
throughput is shown as “Duplicate data - warm cache”’E5520 “client”, with 32 GB of RAM, running RedHat
in Figure[4. First we observe that overall throughput isEnterprise Linux 5. The results of Tallé 3 show that
much higher, reaching 11.5 GB/sec at around 16 stream&acking up unique data does not get much faster with
confirming that the bottleneck in our previous tests wasmore than 4 cores. Careful observation revealed two rea-
in the disk random access performance, which detersons for this behavior. First, even when using the Linux
mines the duplicate backup throughput. Additionally, weloopback interface, we could not get throughput higher
observe that the effects of concurrency are barely visithan 10 Gbps, on that particular host. Notice that when
ble: aggregate throughput is stable up to 128 concurrertulk data transfers become unnecessary, the performance
backups, but at 256 concurrent streams the overhead ofaches 2.49 GB/sec. Second, we realized that careful
pthread shared locks used for protected accesses to tlptimization of our simple RPC mechanism might be
FP cache buckets, as well as a few cache evictions thatble to yield better performance. However, optimizing
render the cache less “warm”, take their toll—slightly network behavior and the RPC implementation is be-
lowering the aggregate throughput (10.6 GB/sec). yond the scope of this study. In order to evaluate the
real throughput of our client design we made the assump-
SSD indexing throughput. Using SSD index imple-  tion of an infinitely fast network/RPC infrastructure, and,
mentation on an 128 GB SSD drive, we repeated theemporarily, eliminated the network performance bottle-
throughput experiments of Figuié 4 in order to 1) testneck. This revealed the client’s full potential: running on
the efficiency of our SSD indexing design, and 2) verify our (slower) main Intel Xeon 5450 server, the client was
the effects of shared locking to duplicate data backups—able to push 360/697/1,023/1,319 MB/sec of unique data,
since the SSD index is read-only and uses no sharedith 1/2/3/4 cores dedicated to MD5, respectively.
locks. For our tests, we maintained the same sampling
rate R=1/101) and used the same amount of memoryBackup throughput conclusions. In summary, our
for caching as before (2 GB)—so as to make a fair com-backup throughput experiments show that, when back-
parison. Notice that with this setup we are now using aing up unique data, our system is nearly as efficient as a
total of only 10 GB and the amount of raw storage thenormal file server for single stream backup (no penalty
system can support rose from 500 to 1,600 TB. Due tdor deduplication) and several times faster for multi-
our efficient SSD index design and the lack of sharedstream backups. This shows that our system can better
locking, most throughput results were similar or superiororganize the data on disks to achieve high throughput
to those of the memory index. Tallle 2 summarizes theeven with concurrent backups. When data are mostly du-
results and difference between the SSD index and menplicates, we can achieve 950 MB/sec for single stream
ory index throughput. Notice, however, that these resultdbackup and 6 GB/sec for multi-stream backups. Multiple
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Unique Total Ideal | Real | De-

segs unique MBs | MBs | dupe
VMO | 518,326 | 518,326 | 2,123 | 2,211 | 96%
VM1 | 733,267 921,522 3,775 | 3,938 | 96%
VM2 | 904,579 | 1,189,230| 4,871 | 5,085 | 96%
VM3 | 1,145,029| 1,616,585| 6,621 | 6,860 | 97%
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Data backed up or deteted (58) Deduplication system benchmarks are dominated by
Figure 5: The reference update time for a given amount of data backedbackup testing and testing of restore is mostly ignored—
up or deleted when the system is empty and nearly full. The &pro- - 1rghably because the restore process is usually slow, and
portional to the data changed, and the slope shows the utdlategh- . . .
put (3 GB/sec). Notice that the throughput is stable regaslbf the f:orrectness IS th? main concern. However, restore is an
capacity of the system or the amount of changed data. Important operation and we wanted to ensure that our
prototype provides sufficient performance. During our
tests all data were restored correctly. Our single stream
streams help improve the aggregate throughput becausestore throughput was measured around 1 GB/sec, and
they maximize the throughput of container FP catalogd30 MB/sec for two or more concurrent restore streams.
pre-fetching. Single stream restore is fast because most accesses are
The major limitations that we observed are duesequential, while multiple concurrent restore streams in-
to hardware restrictions: limited container pre-fetchingtroduce disk seeking. The use of directly locatable ob-
throughput and CPU/networking bottlenecks in ourjects allows us to perform restore without using the in-
end-to-end performance tests. On a production systerdex, making the whole process very scalable.
equipped with hundreds of fast-seeking physical disks,
and utilizing faster network connectivity, we expect to 4.2 Deduplication Efficiency

see much higher throughput. The only software limi- zjthough we are willing to sacrifice some dedupe ac-
tation we observed was due to pthread locks, and i acy for high scalability, we still want to make sure
considered of secondary importance since it only im-,q sy stem provides adequate duplicate detection. In par-
pacts throughput minimally for more than 128 concur-tjc jar, since sampling provides the desired scalability,
rent backup streams. dedupe efficiency will be mostly determined by the ef-
fectiveness of pre-fetching.

In our synthetic data set, the true (“ground truth”) du-
A critical property that is not often tested in deduplica- plication is 100%. Our prototype consistently eliminates
tion systems, is the performance of reference updates, eso less than 97% of duplicates. This is consistent with
pecially when we need to delete data—an operation thathe theoretical expectation, based on Equdilon 2: when
happens almost daily. Figuké 5 shows reference updatee pre-fetch FPs from the container catalog, and because
times measured when the synthetic data set gets backélde sampling rate is 1 out of 101, the first 200 FPs may
up or deleted, both when the system is empty and neamot be found. After the first hit, (101st FP in the worst
full capacity. The time is linear with the size of data case), we pre-fetch all FPs in that container. So theoreti-
backed up or deleted, because we need to update the refally we may fail to detect 100 over 4096 FPs, i.e., 2.4%.
erence of each segment that gets used. For our VMWare data set we used our test sampling

The slope of the line corresponds to the throughputate of 1/101, and a small FP cache (256 MB) in order to
of the reference update, which is 3.2 GB/sec for dateensure that the cache cannot hold the whole working set.
addition, and 3.1 GB/sec for data deletion. Deletion isWe performed multiple backups of each VM image, ob-
slightly slower because when segments get deleted, theserving 100% dedupe efficiency for each run, with very
also need to be removed from the index. Contrary to ahigh throughput (2.4 GB/sec). A more interesting exper-
regular file-system, the deletion throughput of the deduiment, however, presented in Table 4, is the dedupe ef-
plication system is slow because we pay the price oficiency achieved when backing up VMO, VM1, VM2,
data sharing. However, it is still faster than the backupand VM3 back-to-back. Image VMO has 518,326 4 KB
throughput of new data, which prevents the backup prosegments, taking up 2,211 MB of disk space, instead

4.1.2 Reference Update Throughput
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of 2,123 MB, giving us 96% of the ideal dedupe effi- i
ciency. Backing up VM1 introduced 403,196 new seg-  sooo-
ments (330,071 of VM1’s segments were also in VMO), i
taking up 3,938 MB, for a steady dedupe efficiency of
96%. Similarly, VM2 and VM3 were deduplicated at
96% and 97% of the optimal dedupe rate, which is a ver
satisfying result for a cache of only 256 MB. These re-
sults are particularly encouraging, since field experienc i
has demonstrated that VM image backups are one of tt 1000~
most common and effective uses of dedupe. L

4.3 Scalability _ N , o
- ) Figure 6: Throughput scalability tests show that there is no signifi-
In order to test the scalability of the system we first pop-cant throughput drop when we get close to full capacity. Weiir©(1)

ulated it to near-full Capacity (480 out of 500 TB i.e., cost for most index operations, and throughput is disk-bdden both
95.5%) with unique data. Because our disk array is only'"due and duplicate data backups.
24 TB, we stored everything except the actual segment

data. As the code mainly operates on the metadata, d'?br every 10 GB of memory) is higher than the capacity

carding segment data has no impact on the correctnes . :
any other single-node system presented in Seltidn 4.4.
of the test. After the system was populated we repeate8 Y g Y P

the same throughput tests, during which everything was .
stored on disk (including segment data). 4.4 Comparison to State-of-the-art
Figurd® presents a throughput comparison between awhen evaluating dedupe systems it is often the case that
empty and near-full system. For multi-stream through-custom methods and private workloads are used to quan-
put, the system occupancy has negligible performancéfy the effectiveness of the proposed mechanisms (e.qg.,
impact because for both unique and duplicate data th§l9] and [12]). Comparisons to other systems are usually
throughputis, once again, bounded by the disk’s sequerdifficult, and limited to references to results reported by
tial write and random read performance, respectivelyvendors, mostly because there is no agreed deduplication
When the system is near full capacity, the index lookupbenchmark that would make benchmarking and compar-
and update time increase slightly. But the main bottle-isons fair and meaningful. Furthermore, when aiming to
neck is still disk I/O0—overshadowing the effects of CPU top the performance of state-of-the art systems, it is al-
overhead. This means that the throughput of the systermost impossible to justify the cost and effort of obtain-
will scale well in terms of system capacity while disk ing, deploying and benchmarking even a single one of
I/O is the main bottleneck—which is probably going to them. In our evaluation we tried to use data sets that will
be true in the foreseeable future. exercise the system in interesting ways, and that are rel-
The index overhead does show up for single streanatively easy to be recreated and tested by other systems.
throughput. The throughput of single stream backup near Table[4.%4 presents some of the most popular high-
full capacity is slower than that of the empty system be-performance deduplication solutions available as of
cause single stream throughput is CPU bound and adcApril 2011. Assuming that all systems provide adequate
cessing a “fuller” index takes a little bit more CPU time. deduplication efficiency (specifications do not provide
Figurel® also compares reference update performanga&recise numbers), we can see that our prototype’s peak
when the system is empty and near-full. As expectedperformance is similar to or better than that of all sys-
the time for reference update is almost the same, sinceems, with the exception of NEC’s HydraStor. However,
the grouped mark-and-sweep algorithm only touches thaotice that HydraStor utilizes a large distributed system
changed backup groups. The majority of the referenceg55 “accelerator” and 110 “storage” nodes) in order to
regardless of how many they are when the system is neachieve its maximum throughput, and yet its raw capac-
full capacity, are not touched by the grouped mark-andity is limited to only 1.3 PB. Our prototype’s single-
sweep. Finally, we also checked the deduplication effinode scalability competes with that of all systems and
ciency for both the synthetic and real data sets and obsurpasses most of them, especially considering the lim-
served no degradation in a near-full system. ited amount of resources we have used (e.g., only 25 GB
Our results demonstrate that all parts of our prototypeof RAM per 500 TB forR= 1/101, on an older 8-core
are able to scale to high capacity, with almost no perforserver). Notice, however, that our goal to increase single-
mance decrease. We are confident that our system woultbde scalability is not meant to replace all multi-node
scale to higher capacities, given more resources. Moresystems, but to potentially improve them by enabling
over, the raw capacity supported by our system (200 TBeach node to make better use of its resources and increase
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Product Backup | Capacity | Nodes some type of caching (e.g., [18,/19]), but, to our knowl-

: (MB/sec) | (TB) edge, it has not been used before in combination with
DataDomain DD890[3)] 4,083 384 1 an aggressive sampling approach, such as the one we are
HP D2D4324 [7] 1,110 18 1 proposing.
G lBM; roteg;zro[gg) 5 1§g%0 12'220 i Our key assumption difference from previous efforts
re,inEgt sidrasmr [ EE T is that we are willing to relax our duplicate detection ef-
nsesiorie | e12s0 | 1300 | a0 | fAE e IERes e Moot other sy
| Ourprototype | 6000 | 500 [ 1 | g g p . y

tems have provided good solutions for a subset of prob-
lems, usually excluding single-node scalability and ref-
erence management. For instance, DataDomaln [19] ad-
data density per node. By doing so we could decreasgressed the disk bottleneck, by introducing a series of
the number of nodes ﬁecessary for a particular deplo 9ptimizations, inc_Iuding a Bloom filter, and_spacial local-
ment, thus significantly decreasing the overall (acquisi-'ty' However, their sy_ste_m_can support a limited amount
tion, management, energy, etc) cost of raw storage, and is limited by network performance,

' 9 ! 9y ' since duplicate detection is performed only at the server.
Additionally, it is not clear whether DataDomain’s sys-
5 Related Work tem can perform truly scalable resource reclamation.

HYDRAstor [4] on the other hand, achieves good scal-

Since the days of early deduplication systems, that perab_ility, but it doe_s so by using a highly distributed, hierar
formed mostly file-level or naive block-level deduplica- chical model, with each node holding only a few tens of
tion [1,[11/16], a lot of effort has been put into optimiz- 1B Of storage. This design yields a high backup through-
ing duplicate detection. In particular, many systems havéut, but at the cost of a highly distributed, costly system.
investigated methods to perform content-aware segmeri€letions in HYDRAstor, are implemented with a dis-
boundary calculation, aiming to improve better dupli- tnbptec_i reference counting mgthod, which is difficult to
cate coverage. Any degradation in dedupe efficiency Wagn_alntam correctly, and scale without a large performance
considered unacceptable. Such variable-size segmentait- o
tion algorithms, utilize different variations of byte-sv ~ MAD2 [18] also uses a distributed storage system to
approaches, such as sliding window approaches (e.gProvide scalability, as well as a number of optimizations
[5]), rolling hashes (e.g.[ [15]), Rabin fingerprints [2], that |pclude spacial locality c.achlng, apd E_ﬂoom filters.
and bimodal chunkind [10]. For instance, systems likeDeletions are a very challenging operation in this system
MAD2 [18], HYDRAstor [4, [17], as well as dedu- asWell:they are performed only at the file level, and they
plication solutions by DataDomain [19] and Hewlett- are also handled by a variant of reference counting, with
Packard [[12], utilize variable-size segments, in an at2ll the scalability and correctness problems discussed in
tempt to achieve maximum compression. However, everp€ction . 2.2. To our knowledge, our grouped mark-and-
if these algorithms make the best of raw storage (whictSWeep approach is the only truly scalable, documented
is not always the case, as observed(by [9]), single-nodEeference management implementation, that is also very
capacity is limited. Our work takes a different approach:resilient to errors. _
we are willing to sacrifice some deduplication efficiency Many scalable systems have adopted the event-driven
in order to achieve higher single-node scalability. design, however it is interesting that the nature of our ap-
A sampling method is used in [12] to address indexingpl'cat'on requires thgt we ut|I|z_e it for t_heﬂent, rather
scalability restrictions. However, that approach is digni than the server. A pipelined client design was also pro-
cantly different from ours, since it uses sampling to prob-P0S€d byl[13], but it is significantly different from our
abilistically identify “super-segments” that are used to d€Sign: it assumes pipeline stages whose operation re-
perform coarse-granularity deduplication. Our segmenduires a fixed amount of time, making it unrealistic for
tation algorithm operates at fine granularity at all times,N€tWwork operation. It also uses disk-based, client-side in
and sampling is not used for pattern-matching, but for in-d€xing, itimplements a lot of functionality in the kernel,
dexing actual file segments. Additionally, our approach isa"d it achieves scalability and throughput that is orders
significantly more scalable, and can operate under heaV§)f magnitude lower than those of our client design.
memory constraints, with good sampling rates: in a set-
ting similar to the experiments presented (in|[12], ourg Conclusion
sampled index would require about 74% less memory
(4.4 GB instead of 17 GB, witR=1/101). Important engineering challenges need to be addressed
A lot of systems have used spacial locality to performin order to achieve the scalability, throughput and dedu-

Table 5: Summary: state-of-the art dedupe products as of April 2011
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plication efficiency necessary to provide next-generation [5]
deduplication support. We have presented a clean-slate
design that aims to maximize overall single-node ef-
fectiveness, and introduces new mechanisms that ad-
dress the most pressing of these challenges. Our difg
rectly locatable objects enable the use of progressivem
sampled indexing—in memory or on SSD—which pro-
vides superior single-node scalability and memory us- [g]
age efficiency—unlike any other system we know of.
Our grouped mark-and-sweep mechanism attacks thd®€l
difficult, and often neglected, resource management
and reclamation problem, in a truly scalable and effi-
cient manner. Additionally, we have proposed an asyny,
chronous interface to the server back-end, capable of
pushing data to the server at a high-enough rate.

The performance of our prototype validates the ef-
fectiveness of our design. Progressive sampled inde>i-11]
ing achieves very good deduplication efficiency, while
using only 10 GB of memory per 200 TB of raw stor-
age (25 GB for 500 TB in our tests). Additionally, we
were able to achieve backup throughput ranging from
950 (all unique data) to 6,000 MB/sec (all duplicate [12]
data), with deduplication efficiency no less than 97%,
while our grouped mark-and-sweep approach can pro-
cess data with speeds higher than 3.1 GB/sec, demon-
strating that single-node dedupe effectiveness can be
greatly improved by making good use of available re-[13]
sources.
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