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Abstract

This paper describes TidyFS, a simple and small dis-
tributed file system that provides the abstractions neces-
sary for data parallel computations on clusters. In recent
years there has been an explosion of interest in computing
using clusters of commodity, shared nothing computers.
Frequently the primary I/O workload for such clusters
is generated by a distributed execution engine such as
MapReduce, Hadoop or Dryad, and is high-throughput,
sequential, and read-mostly. Other large-scale distributed
file systems have emerged to meet these workloads, no-
tably the Google File System (GFS) and the Hadoop Dis-
tributed File System (HDFS). TidyFS differs from these
earlier systems mostly by being simpler. The system
avoids complex replication protocols and read/write code
paths by exploiting properties of the workload such as the
absence of concurrent writes to a file by multiple clients,
and the existence of end-to-end fault tolerance in the ex-
ecution engine. We describe the design of TidyFS and
report some of our experiences operating the system over
the past year for a community of a few dozen users. We
note some advantages that stem from the system’s simplic-
ity and also enumerate lessons learned from our design
choices that point out areas for future development.

1 Introduction

Shared-nothing compute clusters are a popular platform
for scalable data-intensive computing. It is possible to
achieve very high aggregate I/O throughput and total data
storage volume at moderate cost on such a cluster by
attaching commodity disk drives to each cluster computer.

In recent years data-intensive programs for shared-
nothing clusters have typically used a data-parallel frame-
work such as MapReduce [9], Hadoop [13], Dryad [16],
or one of the higher level abstractions layered on top of
them such as PIG [22], HIVE [14], or DryadLINQ [28].
In order to achieve scalability and fault-tolerance while

remaining relatively simple, these computing frameworks
adopt similar strategies for I/O workloads, including the
following properties.

• Data are stored in streams which are striped across
the cluster computers, so that a single stream is the
logical concatenation of parts stored on the local
file-systems of the compute machines.

• Computations are typically parallelized so that each
part of a distributed stream is streamed as sequential
reads by a single process, and where possible that
process is executed on a computer that stores that
part.

• In order to get high write bandwidth on commodity
hard drives I/O is made sequential as far as possi-
ble. In order to simplify fault-tolerance and reduce
communication the computing frameworks do not
implement fine-grain transactions across processes.
Consequently, modifications to datasets are made by
replacing an entire dataset with a new copy rather
than making in-place updates to an existing stored
copy.

• In order to achieve high write bandwidth the streams
are written in parallel by many processes at once. In
order to reduce communication and simplify lock
management however, each part is typically written
sequentially by a single writer. After all the parts
have been output in their entirety they are assembled
to form a stream.

• In order to provide fault-tolerance when computers
or disks become unavailable, the frameworks auto-
matically re-execute sub-computations to regenerate
missing subsets of output datasets.

Distributed file systems have been developed to sup-
port this style of write-once, high-throughput, parallel
streaming data access. These include the I/O subsystem



in River [4], the Google File System (GFS) [11], and the
Hadoop Distributed File System (HDFS) [6, 24]. Unsur-
prisingly there are similarities in the designs of these sys-
tems: metadata for the entire file system is centralized and
stored separately from stream data, which is striped across
the regular compute nodes. They differ in their level of
complexity and their support for general filesystem op-
erations: for example GFS allows updates in the middle
of existing streams, and concurrent appends by multiple
writers, while the HDFS community has struggled with
the tradeoff between the utility and complexity of even
single-writer append operations [10] to a stream that can
be concurrently read. In order to provide fault-tolerance
all the systems replicate parts of a distributed stream, and
provide reliable write semantics so that a stream append is
replicated before the write is acknowledged to the client.

This paper presents TidyFS, a distributed file system
which is specifically targeted only to workloads that sat-
isfy the properties itemized above. The goal is to sim-
plify the system as far as possible by exploiting this re-
stricted workload. Parts of a distributed stream are in-
visible to readers until fully written and commited, and
subsequently immutable, which eliminates substantial se-
mantic and implementation complexity of GFS and HDFS
with appends. Replication is lazy, relying on the end-to-
end fault tolerance of the computing platform to recover
from data lost before replication is complete, which al-
lows us to eliminate custom I/O APIs so parts are read
and written directly using the underlying compute node
file system interface.

Sections 2 and 3 outline the data model and architecture
of TidyFS in more detail. Section 4 describes some of
our experiences operating TidyFS for over a year. We
describe related work in Section 5 and then conclude
with a discussion of some of the tradeoffs of our design
choices.

2 TidyFS usage

This section describes the TidyFS data model and the
typical usage patterns adopted by clients. As noted in the
introduction, the design aims to make TidyFS as simple
as possible by exploiting properties of its target workload.
Wherever features are introduced in the following discus-
sion that might seem to go beyond the simplest necessary
functionality, we attempt to justify them with examples
of their use.

2.1 Data Model
TidyFS makes a hard distinction between data and meta-
data. Data are stored as blobs on the compute nodes
of the cluster and these blobs are immutable once writ-
ten. Metadata describe how data blobs are combined to

form larger datasets, and may also contain semantic in-
formation about the data being stored, such as their type.
Metadata are stored in a centralized reliable component,
and are in general mutable.

TidyFS exposes data to clients using a stream abstrac-
tion. A stream is a sequence of parts, and a part is the
atomic unit of data understood by the system. Each part
is in general replicated on multiple cluster computers to
provide fault-tolerance. A part may be a single file ac-
cessed using a traditional file system interface or it may
be a collection of files with a more complex type—for
example, TidyFS supports SQL database parts which are
pairs of files corresponding to a database and its log. The
operations required by TidyFS are common across multi-
ple native file systems and databases so this design is not
limited to Windows-based systems.

The sequence of parts in a stream can be modified,
and parts can be removed from or added to a stream;
these operations allow the incremental construction of
streams such as long-lived log files. A part can be a
member of multiple streams, which allows the creation
of a snapshot or clone of a particular stream, or a subset
of a stream’s parts. Clients can explicitly discover the
number, sizes and locations of the parts in a stream, and
use this information for example to optimize placement
of computations close to their input data.

Each stream is endowed with a (possibly infinite) lease.
Leases can be extended indefinitely, however, if a lease
expires the corresponding stream is deleted. Typically a
client will maintain a short lease on output streams until
they are completely written so that partial outputs are
garbage-collected in the case of client failure. When a
stream is deleted any parts that it contained which are
not contained in any other stream are also scheduled for
deletion.

Each part and stream is decorated with a set of meta-
data represented as a key-value store. Metadata include
for example the length and fingerprint of a part, and the
name, total length and fingerprint of a stream. Rabin fin-
gerprints [7] are used so that the stream fingerprint can be
computed using the part fingerprints and lengths without
needing to consult the actual data. Applications may also
store arbitrary named blobs in the metadata, and these are
used for example to describe the compression or partition-
ing scheme used when generating a stream, or the types
of records contained in the stream.

2.2 Client access patterns

A client may read data contained in a TidyFS stream by
fetching the sequence of part ids that comprise the stream,
and then requesting a path to directly access the data as-
sociated with a particular part id. This path describes a
read-only file or files in the local file system of a clus-



ter computer, and native interfaces (e.g., NTFS or SQL
Server) are used to open and read the file. In the case
of a remote file, a CIFS path is returned by the metadata
server. The metadata server uses its knowledge of the
cluster network topology to provide the path of the part
replica that is closest to the requesting process. The meta-
data server prioritizes local replicas, then replicas stored
on a computer within the same rack, and finally replicas
stored on a computer in another rack.

To write data, a client first decides which stream the
data will be contained in, creating a new empty stream if
necessary. The client then asks TidyFS to “pre-allocate”
a set of part ids associated with that stream. When a
client process wishes to write data, it selects one of these
pre-allocated part ids and asks TidyFS for a write path
for that part. Typically the write path is located on the
computer that the client process is running on, assuming
that computer has space available. The client then uses
native interfaces to write data to that path. When it has
finished writing the client closes the file and adds the new
part to the stream, supplying its size and fingerprint. At
this point the data in this part is visible to other clients,
and immutable. If a stream is deleted, for example due to
lease expiration, its pre-allocated part ids are retired and
will not be allocated to subsequent writers.

Optionally the client may request multiple write paths
and write the data on multiple computers so that the part
is eagerly replicated before being committed, otherwise
the system is responsible for replicating it lazily. The
byte-oriented interface of the TidyFS client library, which
is used for data ingress and egress, provides the option
for each write to be simultaneously written to multiple
replicas.

The decision to allow clients to read and write data us-
ing native interfaces is a major difference between TidyFS
and systems such as GFS and HDFS. Native data access
has several advantages:

• It allows applications to perform I/O using whatever
access patterns and compression schemes are most
suitable, e.g., sequential or random reads of a flat
file, or database queries on a SQL database part.

• It simplifies legacy applications that benefit from
operating on files in a traditional file system.

• It avoids an extra layer of indirection through TidyFS
interfaces, guaranteeing that clients can achieve the
maximum available I/O performance of the native
system.

• It allows TidyFS to exploit native access-control
mechanisms by simply setting the appropriate ACLs
on parts, since client processes operate on behalf of
authenticated users.

• It gives clients precise control over the size and
contents of a part so clients can, for example,
write streams with arbitrary partitioning schemes.
Pre-partitioning of streams can lead to substantial
efficiencies in subsequent computations such as
database Joins that combine two streams partitioned
using the same key.

The major disadvantage would appear to be a “loss of
control” on the part of the file system designer over how
a client may access the data, however our experience is
that this, while terrifying to many file system designers,
is not in practice a substantial issue for the workloads that
we target. The major simplification that we exploit is that
data are immutable once written and invisible to readers
until committed. The file system therefore does not need
to mediate between concurrent writers or order read/write
conflicts. The detection of corruption is also simplified be-
cause data fingerprints are stored by TidyFS. A malicious
client is unable to do more than commit corrupted data,
or (access-controls permitting) delete or corrupt existing
data. In both these cases the corruption will be discovered
eventually when the fingerprint mismatch is detected and
the data will be recovered from another replica or dis-
carded if no good replicas are available. This is no worse
than any other file system: if a client has write access to
a file it can be expected to be able to destroy the data in
that file.

Systems such as HDFS and GFS perform eager repli-
cation in their client libraries. Although the TidyFS client
library provides optional eager replication for data ingress,
TidyFS gains simplicity and performance in the common
case by making lazy replication the default. The potential
loss of data from lazy replication is justifiable because
of the underlying fault tolerance of the client computa-
tional model: a failure of lazy replication can be treated
just like a failure of the computation that produced the
original part, and re-run accordingly. This is even true for
workloads such as log processing, which are often imple-
mented as a batch process with the input being staged be-
fore loading into a distributed file system. We believe this
reliance on end-to-end fault tolerance is a better choice
than implementing fault tolerance at multiple layers as
long as failures are uncommon: we optimize the common
case and in exchange require more work in error cases.

A drawback to giving clients control over part sizes is
that some may end up much larger than others, which can
complicate replication and rebalancing algorithms. Both
GFS and HDFS try to split streams into parts of moderate
sizes, e.g., around 100 MBytes. In principle a system
that controls part boundaries could split or merge parts to
improve efficiency, and this is not supported by TidyFS
since each part is opaque to the system. In our experience,
however, such rebalancing decisions are best made with
semantic knowledge of the contents of the stream, and



we can (and do) write programs using our distributed
computational infrastructure to defragment streams with
many small parts as necessary.

The biggest potential benefit, given our current work-
loads, that we can see from interposing TidyFS inter-
faces for I/O would come if all disk accesses on the com-
pute nodes were mediated by TidyFS. This would po-
tentially allow better performance using load scheduling,
and would simplify the allocation of disk-space quotas to
prevent clients from denying service to other cluster users
by writing arbitrary sized files. We discuss some pros and
cons of this direction in the final section.

Of course, the major tradeoff we make from the sim-
plicity of TidyFS is a lack of generality. Clients of GFS
use multi-writer appends and other features missing in
TidyFS to implement services that would be very ineffi-
cient on our system. Again, we address this tradeoff in
the Discussion.

2.3 SQL database parts
As mentioned in section 2.1, we have implemented sup-
port for two types of TidyFS parts: NTFS files and
SQL databases. In the case of SQL parts, each part is
a Microsoft SQL server database, consisting of both the
database file and the database log file. The TidyFS meta-
data server stores the type of each part, and this informa-
tion is used by the node service so that it will replicate
both files associated with the part. The HadoopDB evalua-
tion [1] shows that for some data-warehouse applications
it is possible to achieve substantial performance gains
by storing records in a database rather than relying on
flat files. We believe that the ease of supporting SQL
parts in TidyFS, compared with the additional mecha-
nisms required to retrofit HadoopDB’s storage to HDFS,
provides support for our design choice to adopt native
interfaces for reading and writing parts. As a bonus we
achieve automatic replication of read-only database parts.
There remains the problem of targeting these partitioned
databases from client code, however, DryadLINQ [28]
can leverage .NET’s LINQ-to-SQL provider to operate
in a hybrid mode shipping computation to the database
where possible, as described in the referenced paper.

3 System architecture

The TidyFS storage system is composed of three compo-
nents: a metadata server; a node service that performs
housekeeping tasks running on each cluster computer that
stores data; and the TidyFS Explorer, a graphical user
interface which allows users to view the state of the sys-
tem. The current implementation of the metadata server
is 9,700 lines of C++ code, the client library is 5,000 lines
of mixed C# and C++ code, the node service is 948 lines

of C# code, and the TidyFS Explorer is 1,800 lines of
C#. Figure 1 presents a diagram of the system architec-
ture, along with a sample cluster configuration and stream.
Cluster computers that are used for TidyFS storage are
referred to in the following text as “storage computers.”

3.1 Metadata server

The metadata server is the most complex component in
the system and is responsible for storing the mapping
of stream names to sequences of parts, the per-stream
replication factor, the location of each part replica, and
the state of each storage computer in the system, among
other information. Due to its central role, the reliability
of the overall system is closely coupled to the reliability
of the metadata server. As a result, we implemented the
metadata server as a replicated component. We leverage
the Autopilot Replicated State Library [15] to replicate
the metadata and operations on that metadata using the
Paxos [18] algorithm. Following the design of systems
such as GFS, there is no explicit directory tree maintained
as part of the file system. The names of the streams in
the system, which are URIs, create an implied directory
tree based on the arcs in their paths. When a stream is
created in the system, any missing directory entries are
implicitly created. Once the last stream in a directory
is removed, that directory is automatically removed. If
the parent directory of that directory is now empty, it
is also removed, and the process continues recursively
up the directory hierarchy until a non-empty directory is
encountered.

The metadata server tracks the state of all of the storage
computers currently in the system. For each computer
the server maintains the computer’s state, the amount of
free storage space available on that computer, the list of
parts stored on that computer, and the list of parts pend-
ing replication to that computer. Each computer can be
in one of four states: ReadWrite, the common state,
ReadOnly, Distress, or Unavailable. When a
computer transitions between these states, action is taken
on either the list of pending replicas, the list of parts
stored on that computer, or both. If a computer tran-
sitions from ReadWrite to ReadOnly, its pending
replicas are reassigned to other computers that are in
the ReadWrite state. If a computer transitions to the
Distress state, then all parts, including any which are
pending, are reassigned to other computers that are in the
ReadWrite state. The Unavailable state is similar
to the Distress state, however in the Distress state,
parts may be read from the distressed computer while
creating additional replicas, while in the Unavailable
state they cannot. The Distress state is used for a com-
puter that is going to be removed from the system, e.g.,
for planned re-imaging, or for a computer whose disk is



Figure 1: TidyFS System Architecture

showing signs of imminent failure. The Unavailable
state signifies that TidyFS should not use the computer at
all.

In the current TidyFS implementation computers tran-
sition between states as a result of an administrator’s
command. We have found this manual intervention to
be an acceptable burden for the clusters of a few hun-
dred computers that we have been operating. A more
widely deployed system should be able to automatically
detect failure conditions and perform transitions out of the
ReadWrite state without operator action. This could
be implemented using well-known techniques such as the
watchdogs employed in the Autopilot system [15].

The metadata server also maintains per-stream and
per-part attributes. There is a set of “distinguished” at-
tributes for each stream or part which are maintained by
the system automatically or as a side-effect of system API
calls, and users may add arbitrary additional attributes as
key-value pairs to store client-specific information. For
streams, the distinguished values are creation time, last
use time, content fingerprint, replication factor, lease time,
and length. For parts, the distinguished values are size
and fingerprint.

Clients of the metadata server, including the other
TidyFS components, communicate with the server via
a client library. This client library includes RSL code that
determines which metadata server replica to contact and
will fail over in case of a server fault.

3.2 Node service

In any distributed file system there is a set of maintenance
tasks that must be carried out on a routine basis. We im-
plemented the routine maintenance tasks as a Windows
service that runs continuously on each storage computer
in the cluster. Each of the maintenance tasks is imple-
mented as a function that is invoked at configurable time
intervals. The simplest of these tasks is the periodic report-
ing, to the metadata server, of the amount of free space
on the storage computer disk drives. The other tasks are

garbage collection, part replication, and part validation,
which are described in the following paragraphs.

Due to the separation of metadata and data in TidyFS
and similar systems, there are many operations that are
initially carried out on the metadata server that trigger
actions on the storage computers in the system. The dele-
tion of streams, via either user action or lease expiration,
is one such operation. Once all of the streams that ref-
erence a particular part are deleted, every replica of that
part should be removed from the storage computer that
holds it. The metadata server is responsible for ensuring
that there are sufficient replicas of each part, as calculated
from the maximum replication factor of all streams the
part belongs to. Once the replicas have been assigned to
particular computers, the node services are responsible
for actually replicating the parts.

In order to determine what parts should be stored on a
storage computer, each node service periodically contacts
the metadata server to get two lists of parts: the first is
the list of parts that the server believes should be stored
on the computer; and the second is the list of parts that
should be replicated onto the computer but have not yet
been copied.

When the node service processes the list of parts that
the metadata server believes should be stored on the com-
puter, the list may differ from the actual list of parts on
the disk in two cases. The first is that the metadata server
believes a part should be there but it is not. This case
is always an error, and will cause the node service to
inform the metadata server of the discrepancy, which in
turn will cause the metadata server to set in motion the
creation of new replicas of the part if necessary. The
second is that the metadata service believes a part that
is present on the disk should not be there. In this (more
common) case the part id is appended to a list of can-
didates for deletion. Once the entire list is processed,
the list of deletion candidates is sent to the metadata
server, which filters the list and returns a list of part ids
approved for deletion. The node service then deletes the
files corresponding to the filtered list of part ids. The



complete function pseudocode is listed in Algorithm 1,
where ListPartsAtNode, RemovePartReplica,
and FilterPendingDeletionList are all calls
that contact the metadata server.

The reason for this two phase deletion protocol is to
prevent parts that are in the process of being written from
being deleted. The metadata server is aware of the part ids
that have been allocated to a stream but not yet committed,
as outlined in Section 2.2, however these pending part
ids are not included in the list of part ids stored on any
storage computer.

Algorithm 1 Garbage collection function
partIds = ListPartsAtNode();
filenames = ListFilesInDataDir();
List pdList;
for all file in filenames do

id = GetPartIdFromFileName(file);
if !partids.Remove(id) then

pdList.Add(id);
end if

end for
for all partId in partids do

RemovePartReplica(partId);
end for
partIdsToDelete = FilterPendingDeletionList(pdList);
for all partId in partIdsToDelete do

DeletePart(partId);
end for

If the list of parts that should be replicated to the node
but are not present is non-empty, the node service contacts
the metadata server for each listed part id to obtain the
paths to read from and write to for replicating the part.
Once the part has been replicated the fingerprint of the
part is validated to ensure it was correctly copied, and
the node service informs the metadata server that it has
successfully replicated the part, after which the part will
be present in the list of ids that the metadata believes are
stored at that computer.

As we will show in Section 4, there is a substantial
fraction of parts that are not frequently read. Latent sector
errors are a concern for the designers of any reliable data
storage system [5]. These errors are undetected errors
where the data in a disk sector gets corrupted and will
be unable to be read. If this undetected error were to
happen in conjunction with computer failures, the system
could experience data loss of some parts. As a result,
the node service periodically reads each part replica and
validates that its fingerprint matches the stored fingerprint
at the metadata server; if not, the node service informs
the metadata server that the part is no longer available on
that computer, potentially triggering a re-replication.

3.3 TidyFS Explorer

The two TidyFS components already described deal with
the correct operation of the system. The final compo-
nent is the graphical user interface for the distributed file
system, named the TidyFS Explorer. It is the primary
mechanism for users and administrators to interact with
the system. Like all other TidyFS clients, the TidyFS
Explorer communicates with the metadata server via the
client library. For users, TidyFS Explorer provides a
visualization of the directory hierarchy implied by the
streams in the system. In addition to the directory hierar-
chy, the TidyFS Explorer exposes the sequence of parts
that comprise a stream, along with relevant information
about those parts. Users can use the GUI to delete streams,
rename streams, manipulate the sequence of parts in a
stream, as well as copy parts between streams. Cluster
administrators can use the TidyFS Explorer to monitor the
state of computers in the system, including determining
what computers are healthy, what replications are pending,
and how much storage space is available. Administrators
can also manually change the state of computers in the
system and interact with the node service.

3.4 Replica Placement

When choosing where to place replicas for each part, we
would like the system to optimize two separate criteria.
First, it is desirable for the replicas of the parts in a partic-
ular stream to be spread across the available computers
as widely as possible, which allows many computers to
perform local disk reads in parallel when processing that
stream. Second, storage space used should be roughly
balanced across computers. Figure 2 shows a histogram
of part sizes in a cluster running TidyFS. Due to this
non-uniform distribution of part sizes, assigning part to
replicas is not as simple as assigning roughly equal num-
bers of parts to each computer.

The location of the data for the first copy of a part is
determined by the identity and state of the computer that
is writing the part. We would like to bias writes to be local
as often as possible, so we simply use the local computer
if it is “legal” to write there, meaning that the computer
is a storage computer in the ReadWrite state that has
enough space available. We do not know the length of the
part before the data is written, so we make a conservative
estimate based on typical usage. If the disk fills up, the
writer will fail and the computational framework’s fault-
tolerance will reschedule the computation elsewhere.

Subsequent replication of parts should optimize the
two criteria above. We have avoided complex balancing
algorithms that directly optimize our desired criterion in
favor of simpler greedy algorithms.
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We initially implemented a policy that assigns a replica
to the legal computer in the system with most free space.
Unfortunately many streams contain very small parts, and
after adding one such small part to a given computer it
often continues to be the one with the most free space.
Since many parts from a stream are replicated in a short
time period when the stream is created, this problem
resulted in very poor balance for streams with small parts:
one computer would hold the second copy of many or all
of that stream’s parts.

This lack of balance led us to implement a second
policy, similar to the one used in the Kinesis project [19]
and techniques described in [21]. This approach uses the
part identifier to seed a pseudo-random number generator,
then chooses three legal computers using numbers drawn
from this pseudo-random number generator and selects
the computer with the most free space from this set as the
destination for the part. As we report in Section 4.4, this
second policy results in acceptable balance for streams.

Over time the system may become unbalanced with
some computers storing substantially more data than oth-
ers. We therefore implemented a rebalancing command.
This simply picks parts at random from overloaded com-
puters and uses the replication policy to select alternate
locations for those parts. The metadata server schedules
the replication to the new location, and when the node
service reports that the copy has been made, the metadata
server schedules deletion from the overloaded computer.

3.5 Watchdog
We recently started to prototype a set of watchdog ser-
vices to automatically detect issues and report them to
an administrator for manual correction. The issues fall
into two categories: error conditions, such as the failure
to replicate parts after an acceptable period; and alert con-
ditions, such as the cluster becoming close to its storage

void AddStorageComputer(string
storageComputerName, ulong freeSpace,
string managedDirectory, string
uncPath, string httpPath, int
networkId);

bool DeleteStorageComputer(string
storageComputerName);

StorageComputerInfo
GetStorageComputerInformation(string
storageComputerName);

void SetFreeSpace(string
storageComputerName, ulong freeSpace);

void SetStorageComputerState(string
storageComputerName,
StorageComputerState
storageComputerState);

string[] ListStorageComputers();

ulong[] ListPartsAtStorageComputer(string
storageComputerName);

ulong[] GetPartReplicaList(string
storageComputerName);

Figure 3: TidyFS API - Operations involving storage
computers

limit or computers becoming unresponsive. In the month
or so that the watchdogs have so far been deployed they
have reported two alerts and no errors. When we have
more confidence in the watchdogs we may integrate them
into an automatic failure mitigation system to reduce the
cluster management overhead.

3.6 API
For completeness we list the TidyFS API here. Most op-
erations involve storage computers, streams and parts. As
previously described, these operations are used by other
TidyFS components (node service and TidyFS Explorer)
and by external applications that wish to read and write
TidyFS data.

Figure 3 includes a representative set of operations in-
volving storage computers. These include commands,
typically used by cluster administrators, for adding, mod-
ifying and removing computers. SetFreeSpace and
SetStorageComputerState are useful for updat-
ing the state of the cluster, and are used both by admin-



string[] ListDirectories(string path);

string[] ListStreams(string path);

void CreateStream(string streamName);

ulong CreateStream(string streamName,
DateTime leaseTime, int numParts);

void CopyStream(string srcStreamName,
string destStreamName);

void RenameStream(string srcStreamName,
string destStreamName);

bool DeleteStream(string streamName);

void ConcatenateStreams(string
destStreamName, string srcStreamName);

void AddPartToStream(ulong[] partIds,
string streamName, int position);

void RemovePartFromStream(ulong partId,
string streamName);

ulong[] ListPartsInStream(string
streamName);

PartInfo[] GetPartInfoList(string
streamName);

DateTime GetLease(string streamName);

void SetLease(string streamName, DateTime
lease);

ulong RequestPartIds(string streamName,
uint numIds);

byte[] GetStreamBlobAttribute(string
streamName, string attrName);

void SetStreamAttribute(string streamName,
string attrName, byte[] attrValue);

void RemoveStreamAttribute(string
streamName, string attrName);

string[] ListStreamAttributes(string
streamName);

Figure 4: TidyFS API - Operations involving streams

void AddPartInfo(PartInfo[] pis);

void AddPartReplica(ulong partId, string
nodeName);

void RemovePartReplica(ulong partId,
string nodeName);

void GetReadPaths(ulong partId, string
nodeName, out StringCollection paths);

void GetWritePaths(ulong partId, string
nodeName, out StringCollection paths);

Figure 5: TidyFS API- Operations involving parts

istrators and by the node service. Operations that allow
listing all computers and all parts at a computer are also
provided for diagnostic purposes and are used by the
TidyFS Explorer. GetPartReplicaList is a com-
mand for listing all new replicas that have been assigned
by TidyFS to a specific storage computer, but that have
not yet been created. This call is invoked periodically by
the node service running on a storage computer to fetch
the list of parts that it needs to fetch and replicate.

Figure 4 lists operations involving streams. Due to
space restrictions we have only included the most often
used ones and have omitted some operations that are sim-
ilar to others already shown. For example, while we only
show operations for getting and setting stream attributes
of blob data type, similar commands exist for attributes
of different types. The figure includes operations for
listing the contents (both subdirectories and streams) of
directories, and stream manipulation commands including
operations for adding and removing parts from a stream.
Parts may be added at any position in the stream, and
streams may be concatenated, which causes all parts from
one stream to be appended to another.

Finally, in Figure 5 the remaining operations involving
parts are listed. The AddPartInfo command is used
by clients to inform TidyFS that a part has been fully
written, and to pass information such as the part size and
fingerprint. Operations for adding and removing repli-
cas from a storage computer (AddPartReplica and
RemovePartReplica) are used by the node service
to inform the metadata server when replicas have been
created at a particular computer. Other important opera-
tions include GetReadPaths and GetWritePaths,
which return a list of paths where a part may be read from,
or written to. These are used by clients prior to reading or
writing any data to TidyFS. There are also operations for



getting and setting part attributes of various data types that
are similar to those provided for streams and are omitted
here for brevity.

The RSL state replication library allows some API calls
to execute as “fast reads” which can run on any replica
using its current state snapshot and do not require a round
of the consensus algorithm. Fast reads can in principle re-
flect quite stale information, and are not serializable with
other state machine commands. Given our read-mostly
workload, by far the most common API calls are those
fetching information about existing streams, such as list-
ing parts in a stream or read paths for a part. We therefore
allow these to be performed as fast reads and use all repli-
cas to service these reads, reducing the bottleneck load on
the metadata server. As we report in Section 4 most reads
are from streams that have existed for a substantial period,
so staleness is not a problem. If a fast read reports stale
data such as a part location that is out of date following a
replication, the client simply retries using the slow-path
version that guarantees an up to date response.

4 Evaluation and experience

TidyFS has been deployed and actively used for the past
year on a research cluster with 256 servers, where dozens
of users run large-scale data-intensive computations. The
cluster is used exclusively for programs run using the
DryadLINQ [28] system. DryadLINQ is a parallelizing
compiler for .NET programs that executes programs using
Dryad [16]. Dryad is a coarse-grain dataflow execution
engine that represents computations as directed-acyclic
graphs of processes communicating via data channels.
It uses TidyFS for storage of input and output data, fol-
lowing the access patterns set out in Section 2.2. Fault-
tolerance is provided by re-execution of failed or slow
processes. Dryad processes are scheduled by a cluster-
wide scheduler called Quincy [17] that takes into account
the size and location of inputs for each process when
choosing which computer to run the process on. The
cluster hardware is as described in our Quincy paper [17].

Dryad queries TidyFS for the locations of its input parts
and passes this information to Quincy so that most pro-
cesses end up scheduled close in network topology to at
least one replica of their input parts. DryadLINQ makes
use of TidyFS attributes to store type information about
the records in output streams and to record partitioning
information—both of these types of attribute are used
by subsequent DryadLINQ programs that consume the
streams as inputs. Our cluster infrastructure also include
Nectar [12] which is a cache manager for computations.
Nectar and DryadLINQ communicate to determine sub-
computations whose results have already been stored to
TidyFS, to save unnecessary recomputation of complex
quantities. Nectar makes use of TidyFS stream and part

fingerprints to determine when the inputs of two compu-
tations are identical.

TidyFS was designed in conjunction with the other
cluster components listed above, so it naturally has APIs
and performance that is well suited to their requirements.
As noted in Section 2.2 we believe these requirements
are shared by other systems including MapReduce and
Hadoop. At the end of the paper we include more discus-
sion of the wider applicability of TidyFS.

4.1 Data volume
On a typical day, several terabytes of data are read and
written to TidyFS through the execution of DryadLINQ
programs. We collected overall statistics on the usage of
the system through logs maintained by TidyFS.

Figures 6 and 7 present daily read and write loads, and
volumes of data deleted, on TidyFS during a sample two-
week period. The purpose of these figures is to give the
reader a sense of the scale of system usage. The amount
of data read and written on a specific day varies over the
days mostly because of the diverse nature of jobs being
run on the cluster, and on other factors such as day of the
week.

As earlier described, Quincy attempts to place pro-
cesses close to the data they will read, and when satisfying
clients’ requests for read paths TidyFS prioritizes copies
of the data that are stored locally at the computer where
the client is running, followed by copies stored within the
same rack, and finally cross racks. The default replication
factor in the cluster is two, so there are generally two
replicas per part from which data can be read. Figure 6
classifies reads as local, within rack, cross rack or remote.
Remote reads refer to reads where the client is outside the
compute cluster. As expected, the majority of reads are
local, followed by reads that occur within the same rack,
indicating that the goal of moving computation close to
the data is very often achieved.

DryadLINQ does not perform any eager replication, so
each part is written once by DryadLINQ and subsequently
replicated lazily by TidyFS. Figure 7 shows the amount
of data committed by DryadLINQ per day during the
sample period. The vast majority of these writes are
local, and there is an equivalent amount of data written
during lazy replication since the default replication count
is two. The volume of data deleted shown in the figure
corresponds again to the volume of primary part data: due
to the replication factor of two, the space freed across the
cluster disks is actually twice as large.

4.2 Access patterns
More insight can be gained into cluster usage by studying
how soon data is read after it has been initially written.
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Figure 7: Terabytes of primary part data written and deleted per day.

We computed, for every read that happened over a period
of three months, the age of the read as the time interval
between the time the read occurred and the time the part
being read was originally written. Figure 8 presents the
cumulative distribution of data read as the read age in-
creases. As shown in the figure only a small percentage of
data is read within the first five minutes after it has been
created. Almost 40% of the data is read within the first
day after the data being read has been created, and around
80% of the data is read within one month of creation.

Given the small percentage of reads that occur within
the first minute of writing a part, the node service’s peri-
odic task of checking for pending replicas is configured to
run every minute. This implies a delay of up to a minute
before lazy replication of a part begins, and reads that
occur in smaller windows of time will have fewer choices
of where to read from.

This effect can be observed in Figure 9, which shows
the proportion of local, within rack and cross rack data
out of all reads that happen for different read ages. As
observed, most reads that happen within the first minute
after a part is written are remote reads, since many of those
parts would only have one copy at that time. However,
as observed from Figure 8 the total number of reads that
happen at that time interval is very small relative to all
reads. For part reads that occur after longer periods of
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Figure 8: Cumulative distribution of read ages (time when
read occurs - time when data was originally written) for
reads occurring over a period of three months.

time since the part’s creation, local and within rack reads
predominate.

To further characterize our cluster’s usage pattern we
analyzed the relationships in timing and frequency be-
tween reads and writes of the same part. In Figure 10 we
show how often parts are read once they have been writ-
ten. Once again, we analyzed data over a period of three
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months, considering all writes and subsequent reads that
happened in the period. For each part written we counted
the number of times the part was subsequently read. As
observed from the graph, many parts are read only once
or a small number of times. There is also a large number
of parts which are never read again by future jobs.
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Figure 10: Number of times a part is read after it has been
originally written.

Finally, in Figure 11 we present results on the last
access time of parts. For every part in the system, we
identify the last time it was read, up to a maximum of
sixty days, and plot the cumulative ratio of parts as a
function of their last read time. Approximately thirty
percent of the parts had not been read in the period of
sixty days, and read ages are evenly distributed over the
sixty day period.
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Figure 11: Cumulative distribution of parts over time
since parts’ last access.

4.3 Lazy versus Eager Replication

In order to evaluate the effectiveness of lazy replication,
we gathered statistics about the average time before parts
are replicated. Table 1 shows the mean time between a
part being added to the system and the creation of a replica
for that part over a three month time window. Nearly 70%
of parts have a replica created within 60 seconds and 84%
within 2 minutes. 96% of parts have a replica within one
hour. Parts that are not replicated within one hour are
due to the node service on the storage computer where
the replica has been scheduled being disabled for system
maintenance. The data in these parts is still available
from the original storage computer. Therefore, we find
that lazy replication provides acceptable performance for
clusters of a few hundred computers. We have been expe-
riencing around one unrecoverable computer failure per
month, and have not so far lost any unreplicated data as a
consequence.

Mean time to replication (s) Percent
0 - 30 6.7%

30 - 60 62.9%
60 - 120 14.6%

120 - 300 1.1%
300 - 600 2.2%

600 - 1200 4.5%
1200 - 3600 3.4%

3600 - 4.5%

Table 1: Mean time to replication over a three month time
interval.



4.4 Replica Placement and Load Balancing
As described in Section 3.4, we would like TidyFS to
assign replicas to storage computers using a policy that
balances the spread of parts per stream across computers
as well as the total free space available at storage com-
puters. We compare the two policies we implemented:
the initial space-based policy that led to poorly-balanced
streams, especially for those streams with many small
parts; and the subsequent best-of-three random choice
policy.

We define a load-balancing coefficient for each stream
by calculating the L2 distance between a vector represent-
ing the number of parts from a particular stream assigned
to a specific storage computer and the perfectly-balanced
mean vector. The coefficient is computed as follows:√∑n

i=1(pi −
rp
n )2 where r is the stream replication fac-

tor, p is the number of parts in the stream, pi is the number
of part replicas stored at node i, and n is the number of
computers in the ReadWrite state in the cluster. We
normalize so that a coefficient of 1 corresponds to the
worst-case situation where just r computers are used to
store all the parts, which leads to the following complete
equation:

1√
r(p− rp

n )2 + (n− r)( rpn )2

√√√√ n∑
i=1

(pi −
rp

n
)2 (1)

The load-balancing behavior was analyzed over two
periods of time: in the first one, the space-based policy
was used; in the second one, the randomized policy. We
computed, at the end of each day, the load balancing
coefficient of each stream, as given by Equation 1, and
the overall average over all streams. Figure 12 presents
the average coefficient for each day over these two periods.
As shown in the figure, streams were significantly better
balanced during the second period when the randomized
policy was being used.

5 Related Work

The TidyFS design shares many characteristics with other
distributed storage systems targeted for data-intensive
parallel computations, but wherever possible simplifies or
removes features to improve the overall performance of
the system without limiting its functionality for its target
workload. While several systems only focus on delivering
aggregate performance to a large number of clients, one of
the main goals with TidyFS is to also encourage moving
computation close to the data by providing interfaces that
allow applications to locate all replicas of parts.

Like several distributed storage systems such as
Frangipani [26], GPFS [23], GFS [11], HDFS [6, 24],
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Figure 12: Load balancing coefficient when using space-
based policy against randomized policy for replica place-
ment.

PanasasFS [27] and Ursa Minor [25], TidyFS separates
metadata management from data storage, allowing data to
be transparently moved or replicated without client knowl-
edge. Some of these systems do not maintain the meta-
data in centralized servers and support complex read and
write semantics, either by relying on distributed locking
algorithms (Frangipani, GPFS), or by migrating metadata
prior to executing metadata operations (Ursa Minor).

TidyFS is most similar to GFS [11] and HDFS [6, 24].
It follows their centralized metadata server design and
focuses on workloads where data is written once and read
multiple times, which simplifies the needed coherency
model. Despite the similarities with GFS and HDFS,
TidyFS’s design differs from these systems in important
ways. The most significant difference is that TidyFS uses
native interfaces to read and write data while GFS and
HDFS both supply their own data access APIs. This
design choice leads to related differences in, for example,
replication strategies and part-size distribution.

TidyFS also differs from GFS in how it achieves re-
silience against metadata server crashes. GFS maintains
checkpoints and an operation log to which metadata oper-
ations should be persisted before changes become visible
to clients. TidyFS instead maintains multiple metadata
servers, all of which keep track of all the metadata in
the system, and uses the Paxos [18] algorithm to main-
tain consistency across the servers. A similar approach
is used in BoomFS [2], a system similar to HDFS built
from declarative language specifications.

TidyFS’s ability to handle database parts enables a hy-
brid large-scale data analysis approach that exploits the
performance benefits of database systems, similarly to
the approach taken for HadoopDB [1]. HadoopDB com-
bines MapReduce style computations with database sys-
tems to achieve the benefits of both approaches, although



the databases accessed by HadoopDB are not stored in
HDFS or a replicated file system. The MapReduce frame-
work is used to parallelize queries, which are then exe-
cuted on multiple single-node database systems. Database
parts stored in TidyFS can be queried using Dryad and
DryadLINQ in similar ways.

6 Discussion

TidyFS is designed to support workloads very much like
those generated by MapReduce and Hadoop. It is thus
natural to compare TidyFS to GFS and HDFS, the file sys-
tems most commonly used by MapReduce and Hadoop
respectively. The most consequential difference is the
decision for TidyFS to given clients direct access to part
data using native interfaces. Our experience of the re-
sulting simplicity and performance, as well as the ease
of supporting multiple part types such as SQL database,
has validated our assumption that this was a sensible de-
sign choice for the target Dryad workload. The main
drawback is a loss of generality. Other systems built on
GFS, such as BigTable [8], use the ability to persist small
appends and make them visible to other clients in order
to achieve performance and reliability, and the desire to
support appends in HDFS is related to the desire to imple-
ment similar services such as HBASE on top of that file
system [10]. A key point in [20] is that the GFS semantics
were not a good fit for all of the applications rapidly built
on GFS. Some issues that are described in [20], such as
the small file problem, can be addressed in client libraries.
Other issues, including inconsistent data returned to the
client depending on which replica was read and latency is-
sues because GFS was designed for high-throughput, not
low-latency, cannot be addressed in client libraries. We
believe however that rather than complicating the com-
mon use case of a data-intensive parallel file system it
makes more sense to add a separate service for reliable
logging or distributed queues. This was done for example
in River [4] and the Amazon Web Service [3] and would
be our choice if we needed to add such functionality to
our cluster.

Another feature that TidyFS lacks as a result of our
choice of native interfaces is automatic eager replication,
with the exception of optional eager replication in the data
ingress case. Again we are happy with this tradeoff. In the
year we have been operating TidyFS we have not had a
single part lost before replication has completed. Clearly
this is primarily because of the relatively small size of
our deployment, however it suggests that leveraging the
client’s existing fault-tolerance to replace lost data is a
reasonable alternative to eager replication, despite the
additional work spent in the rare failure cases.

The final major difference is our lack of control over
part sizes. DryadLINQ programs frequently make use of

the ability to output streams with exact, known partition-
ing, which leads to sometimes significant performance
improvements. However we do also have to deal with
problems caused by occasional parts which are very much
larger than the average. This caused problems with our
original simple replication policy that fortunately were
easy to fix with the slightly more sophisticated best-of-
three random policy. We believe that the existence of
very large parts also adds to disk fragmentation across our
cluster. If ignored, we have found that this fragmentation
results in devastating performance penalties as parts are
split into thousands of fragments or more, preventing the
sequential I/O that is necessary for high read throughput.
We have recently started to aggressively defragment all
disks in the cluster to mitigate this problem.

While we motivate the TidyFS design using general
properties of data intensive shared-nothing workloads, in
practice it is currently used almost exclusively by applica-
tions executing using Dryad. Rather than making TidyFS
more general, one direction we are considering is inte-
grating it more tightly with our other cluster services. If
all I/O on the cluster were reads or writes from TidyFS,
Dryad intermediate data shuffling, and TidyFS replica-
tion traffic, then substantial performance benefits might
accrue from integrating I/O into the Quincy scheduling
framework, and possibly even adopting circuit-switched
networking hardware to take advantage of these known
flows. As mentioned in Section 2.2 this tighter integra-
tion might conflict with the choice to allow clients unfet-
tered access to native I/O. On the other hand if the only
client were Dryad, which is trusted to obey scheduling
decisions, the benefits of I/O scheduling might still be
achieved. Tighter integration with Dryad would also let us
revisit a design alternative we had originally considered,
which is to eliminate the node service altogether and per-
form all housekeeping tasks using Dryad programs. We
abandoned this potentially simplifying approach primar-
ily because of the difficulty of ensuring that Dryad would
run housekeeping tasks on specific computers in a timely
fashion with its current fairness and locality policies.

We have recently reimplemented the metadata server
on top of a replicated SQL database instead of the C++
and RSL implementation described in this paper. This
radically reduces the number of lines of novel code in
the system by relying on the extensive but mature SQL
Server codebase. Our main concern is whether compara-
ble performance can be easily attained using SQL, which
is unable to perform fast reads as described in Section 3.6
without the addition of a custom caching layer, and we
are currently evaluating this tradeoff.

Overall we are pleased with the performance, simplicity
and maintainability of TidyFS. By concentrating on a
single workload that generates a very large amount of
I/O traffic we were able to revisit design decisions made



by a succession of previous file systems. The resulting
simplifications have made the code easier to write, debug,
and maintain.
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