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Abstract 

Although Big Data Cloud (e.g., MapReduce, Hadoop 

and Dryad) makes it easy to develop and run highly 

scalable applications, efficient provisioning and fine-

tuning of these massively distributed systems remain a 

major challenge. In this paper, we describe a general 

approach to help address this challenge, based on 

distributed instrumentations and dataflow-driven 

performance analysis. Based on this approach, we have 

implemented HiTune, a scalable, lightweight and 

extensible performance analyzer for Hadoop. We report 

our experience on how HiTune helps users to efficiently 

conduct Hadoop performance analysis and tuning, 

demonstrating the benefits of dataflow-based analysis 

and the limitations of existing approaches (e.g., system 

statistics, Hadoop logs and metrics, and traditional 

profiling). 

1. Introduction 

There are dramatic differences between delivering 

software as a service in the cloud for millions to use, 

versus distributing software as bits for millions to run 

on their PCs. First and foremost, services must be 

highly scalable, storing and processing an enormous 

amount of data. For instance, in June 2010, Facebook 

reported 21PB raw storage capacity in their internal 

data warehouse, with 12TB compressed new data added 

every day and 800TB compressed data scanned daily 

[1]. This type of “Big Data” phenomenon has led to the 

emergence of several new cloud infrastructures (e.g., 

MapReduce [2], Hadoop [2], Dryad [4], Pig [5] and 

Hive [6]), characterized by the ability to scale to 

thousands of nodes, fault tolerance and relaxed 

consistency. In these systems, the users can develop 

their applications according to a dataflow graph (either 

implicitly dictated by the programming/query model or 

explicitly specified by the users). Once an application is 

cast into the system, the cloud runtime is responsible for 

dynamically mapping the logical dataflow graph to the 

underlying cluster for distributed executions.  

With these Big Data cloud infrastructures, the users are 

required to exploit the inherent data parallelism exposed 

by the dataflow graph when developing the applications; 

on the other hand, they are abstracted away from the 

messy details of data partitioning, task distribution, load 

balancing, fault tolerance and node communications. 

Unfortunately, this abstraction makes it very difficult, if 

not impossible, for the users to understand the cloud 

runtime behaviors. Consequently, although Big Data 

Cloud makes it easy to develop and run highly scalable 

applications, efficient provisioning and fine-tuning of 

these massively distributed systems remain a major 

challenge. To help address this challenge, we attempt to 

design tools that allow users to understand the runtime 

behaviors of Big Data Cloud, so that they can make 

educated decisions regarding how to improve the 

efficiency of these massively distributed systems – just 

as what traditional performance analyzers do for a 

single execution of a single program.  

Unfortunately, performance analysis for Big Data Cloud 

is particularly challenging, because these applications 

can potentially comprise several thousands of programs 

running on thousands of machines, and the low level 

performance details are hidden from the users by using 

a high level dataflow model. In this paper, we describe 

a specific solution to this problem based on distributed 

instrumentations and dataflow-driven performance 

analysis, which correlates concurrent performance 

activities across different programs and machines, 

reconstructs the dataflow-based, distributed execution 

process of the Big Data application, and relates the low 

level performance activities to the high level dataflow 

model. 

Based on this approach, we have implemented HiTune, 

a scalable, lightweight and extensible performance 

analyzer for Hadoop. We report our experience on how 

HiTune helps users to efficiently conduct Hadoop 

performance analysis and tuning, demonstrating the 

benefits of dataflow-based analysis and the limitations 

of existing approaches (e.g., system statistics, Hadoop 

logs and metrics, and traditional profiling). For instance, 

reconstructing the dataflow execution process of a 

Hadoop job allows users to understand the dynamic 

interactions between different tasks and stages (e.g., 

task scheduling and data shuffle; see sections 7.1 and 

7.2). In addition, relating performance activities to the 

dataflow model allows users to conduct fine-grained, 



dataflow-based hotspot breakdown (e.g., for identifying 

application hotspots and hardware problems; see 

sections 7.2 and 7.3).  

The rest of the paper is organized as follows. In section 

2, we introduce the motivations and objectives of our 

work. We give an overview of our approach in section 3, 

and present the dataflow-based performance analysis in 

section 4. In section 5, we describe the implementation 

of HiTune, a performance analyzer for Hadoop. We 

experimentally evaluate HiTune in section 6, and report 

our experience in section 7. We discuss the related work 

in section 8, and finally conclude the paper in section 9. 

2. Problem Statement 

In this section, we describe the motivations, challenges, 

goals and non-goals of our work.  

2.1 Big Data Cloud 

In Big Data Cloud, the input applications are modeled 

as directed acyclic dataflow graphs to the users, where 

graph vertices represent processing stages and graph 

edges represent communication channels. All the data 

parallelisms of the computation and the data 

dependencies between processing stages are explicitly 

encoded in the dataflow graph. The users can develop 

their applications by simply supplying programs that 

run on the vertices to these systems; on the other hand, 

they are abstracted away from the low level details of 

the distributed executions of their applications. The 

cloud runtime is responsible for dynamically mapping 

the logical dataflow graph to the underlying cluster, 

including generating the optimized dataflow graph of 

execution plans, assigning the vertices and edges to 

physical resources, scheduling and executing each 

vertex (usually using multiple instances and possibly 

multiple times due to failures). 

For instance, the MapReduce model dictates a two-

stage group-by-aggregation dataflow graph to the users, 

as shown in Figure 1. A MapReduce application has 

one input that can be trivially partitioned. In the first 

stage a Map function, which specifies how the grouping 

is performed, is applied to each partition of input data. 

In the second stage a Reduce function, which performs 

the aggregation, is applied to each group produced by 

the first stage. The MapReduce framework is then 

responsible for mapping this logical dataflow graph to 

the physical resources. For instance, the Hadoop 

framework automatically executes the input MapReduce 

application using an internal dataflow graph of 

execution plan, as shown in Figure 2. The input data is 

divided into splits, and a distinct Map task is launched 

for each split. Inside each Map task, the map stage 

applies the Map function to the input data, and the spill 

stage stores the map output on local disks. In addition, a 

distinct Reduce task is launched for each partition of the 

map outputs. Inside each Reduce task, the copier and 

merge stages run in a pipelined fashion, fetching the 

relevant partition over the network and merging the 

fetched data respectively; after that, the sort and reduce 

stages merge the reduce inputs and apply the Reduce 

function respectively. 
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Figure 1. Dataflow graph of a MapReduce application 
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Figure 2. Dataflow graph of the Hadoop execution plan 

 

 
Figure 3. The Pig program [5] and Hive query example 

In addition, the Pig and Hive systems allow the users to 

perform ad-hoc analysis of Big Data on top of Hadoop, 

using dataflow-style scripts and SQL-like queries 

respectively. For instance, Figure 3 shows the Pig 

program (an example in the original Pig paper [5]) and 

Hive query for the same operation (i.e., finding, for 

each sufficiently large category, the average pagerank 

of high-pagerank urls in that category). In these two 

systems, the logical dataflow graph of the operation is 

implicitly dictated by the language or query model, and 

Pig Script 

good_urls = FILTER urls BY pagerank > 0.2; 

groups = GROUP good_urls BY category; 

big_groups = FILTER groups BY COUNT(good_urls)>1000000; 

output = FOREACH big_groups GENERATE category,  

              AVG(good_urls.pagerank); 

Hive Query 

SELECT category, AVG(pagerank)  

FROM (SELECT category, pagerank, count(1) AS recordnum  

             FROM urls WHERE pagerank > 0.2  

             GROUP BY category) big_groups  

WHERE big_groups.recordnum > 1000000 



is automatically compiled into the physical execution 

plan (another dataflow graph) that is executed on the 

underlying Hadoop system. 

Unlike the aforementioned systems that restrict their 

applications’ dataflow graph, the Dryad system allows 

the users to specify an arbitrary directed acyclic graph 

to describe the application, as illustrated in Figure 4 (an 

example in the Dryad website [7]). The cloud runtime 

then refines the input dataflow graph and executes the 

optimized execution plan on the underlying cluster. 

 
Figure 4. Dataflow graph of a Dryad application [7] 

2.2 Motivations and Challenges 

By exposing data parallelisms through the dataflow 

model and hiding the low level details of the underlying 

cluster, Big Data Cloud allows users to work at the 

appropriate level of abstraction, which makes it easy to 

develop and run highly scalable applications. 

Unfortunately, this abstraction makes it very difficult, if 

not impossible, for users to understand the cloud 

runtime behaviors. Consequently, it remains as a big 

challenge to efficiently provision and tune these 

massively distributed systems, which entails requesting 

and allocating the optimal number of (physical or 

virtual) resources, and optimizing the system and  

applications for better resource utilizations. 

As Big Data Cloud grows in pervasiveness and scale, 

addressing this challenge becomes critically important 

(for instance, tuning Hadoop jobs is considered as a 

very difficult problem and requires a lot of efforts on 

understanding Hadoop internals in Hadoop community 

[8]; in addition, lack of tuning tools for Hadoop often 

forces users to resort to trial and error tuning [9]). This 

motivates our work to design tools that allows users to 

understand the runtime behaviors of Big Data 

applications, so that they can make educated decisions 

regarding how to improve the efficiency of these 

massively distributed systems – just as what traditional 

performance analyzers (e.g., gprof [10] and Intel VTune 

[11]) do for a single execution of a single program. 

Unfortunately, performance analysis for Big Data Cloud 

is particularly challenging due to its unique properties.  

• Massively distributed systems: Each Big Data 

application is a complex distributed application, 

which may comprise tens of thousands of 

processes and threads running on thousands of 

machines. Understanding system behaviors in this 

context would require correlating concurrent 

performance activities (e.g., CPU cycles, retired 

instructions, lock contentions, etc.) across many 

programs and machines with each other. 

• High level abstractions: Big Data Cloud allows 

users to work at an appropriately high level of 

abstraction, by hiding the messy details of 

parallelisms behind the dataflow model and 

dynamically instantiating the dataflow graph 

(including resource allocations, task scheduling, 

fault tolerance, etc.). Consequently, it is very 

difficult, if not impossible, for users to understand 

how the low level performance activities can be 

related to the high level abstraction (which they 

have used to develop and run their applications). 

In this paper, we address these technical challenges 

through distributed instrumentations and dataflow-

driven performance analysis. Our approach allows users 

to easily associate different low level performance 

activities with the high level dataflow model, and 

provide valuable insights into the runtime behaviors of 

Big Data Cloud and applications.  

2.3 Goals and Non-Goals 

Our goal is to design tools that help users to efficiently 

conduct performance analysis for Big Data Cloud. In 

particular, we want our tools to be broadly applicable to 

many different applications and systems, and to be 

applicable to even production systems (because it is 

often impossible to reproduce the cloud behaviors given 

the scale of Big Data Cloud). Several concrete design 

goals result from these requirements. 

• Low overhead: It is critical that our tools have 

negligible (e.g., less than a few percent) 

performance impacts on the running applications. 

• No source code modifications: Our tools should 

not require any modifications to the cloud runtime, 

middleware, messages, or applications. 

• Scalability: Our tools need to handle applications 

that potentially comprise tens of thousands of 

processes/threads running on thousands of servers. 

• Extensibility: We would like our tools to be 

flexible enough so that it can be easily extended to 

support different cloud systems. 

We also have several non-goals. 

• We are not developing tools that can replace the 

need for developers (e.g., by automatically 



allocating the right amount of resources). 

Performance analysis for distributed systems is 

hard, and our goal is to make it easier for users, 

not to automate it. 

• Our tools are not meant to verify the correct 

system behaviors, or diagnose the cause of faulty 

behaviors.  

3. Overview of Our Approach 

Our approach relies on distributed instrumentations on 

each node in the cloud, and then aggregating all the 

instrumentation results for dataflow-based analysis. The 

performance analysis framework consists of three major 

components, namely tracker, aggregation engine and 

analysis engine, as illustrated in Figure 5.  

 
Figure 5. Performance analysis framework 

Timestamp Type Target Value 

Figure 6. Format of the sampling record 

The tracker is a lightweight agent running on every 

node. Each tracker has several samplers, which inspect 

the runtime information of the programs and system 

running on the local node (either periodically or based 

on specific events), and sends the sampling records to 

the aggregation engine. Each sampling record is of the 

format shown in figure 6. 

• Timestamp is the sampling time for each record. 

Since the nodes in the cloud are usually in the 

same administrative domain and highly connected, 

it is easy to have all the nodes time-synchronized 

(e.g., in Hadoop all the slaves exchange heartbeat 

messages with the master periodically and the 

time synchronization information can be easily 

piggybacked); consequently the sampler can 

directly record its sampling time. Alternatively, 

the sampler can send the sampling record to the 

aggregation engine in real-time, which can then 

record the receiving time. 

• Type specifies the type of the sampling record 

(e.g., CPU cycles, disk bandwidth, log files, etc.).  

• Target specifies the source of the sampling record. 

It contains the name of the local node, as well as 

other sampler-specific information (e.g., CPUID, 

network interface name or log file name). 

• Value contains the detailed sampling information 

of this record (e.g., CPU load, network bandwidth 

utilization, or a line/record in the log file). 

The aggregation engine is responsible for collecting the 

sampling information from all the trackers in a 

distributed fashion, and storing the sampling 

information in a separate monitoring cluster for analysis. 

Any distributed log collection tools (e.g., Chukwa [12], 

Scribe [13] and Flume [14]) can be used as the 

aggregation engine. In addition, the analysis engine runs 

on the monitoring cluster, and is responsible for 

conducting the performance analysis and generating the 

analysis report, using the collected sampling 

information and a specification file describing the 

logical dataflow model of the specific Big Data cloud. 

4. Dataflow-Based Performance Analysis 

In order to help users to understand the runtime 

behaviors of Big Data Cloud, our framework presents 

the performance analysis results in the same dataflow 

model that is used in developing and running the 

applications. The key technical challenge is to re-

construct the high level, dataflow-based, distributed and 

dynamic execution process for each Big Data 

application, based on the low level sampling records 

collected across different programs and machines. We 

address this challenge by: 

1) Running a task execution sampler on every node 

to collect the execution information of each task 

in the application. 

2) Describing the high level dataflow model of Big 

Data Cloud in a specification file provided to the 

analysis engine. 

3) Constructing the dataflow execution process for 

the application based the dataflow specification 

and the program execution information. 

4.1 Task Execution Sampler 

To collect the program execution information, the task 

execution sampler instruments the cloud runtime and 

tasks running on the local node, and stores associated 

information into its sampling records at fixed time 



intervals as follows. 

• The Target field of the sampling record needs to 

store the identifier (e.g., application name, task 

name, process ID and/or thread ID) of the 

program that is instrumented to collect this piece 

of sampling information. 

• The Value field of the sampling record must 

contain the execution position of the program (e.g., 

thread name, stack trace, basic-block ID and/or 

instruction address) at which the program is 

running when it is instrumented to collect this 

piece of sampling information. 

In practice, the task execution sampler can be 

implemented using any traditional instrumentation tool 

(which runs on a single machine), such as Intel VTune. 

4.2 Dataflow Specification 

In order for the analysis engine to efficiently conduct 

the dataflow-based analysis, the dataflow specification 

needs to describe not only the dataflow graph (e.g., 

vertices and edges), but also the high level resource 

mappings of the dataflow model (e.g., physical 

implementations of vertices/edges, parallelisms between 

different phases/stages, and communication patterns 

between different stages). Consequently, the dataflow 

specification does require a priori knowledge of the 

cloud system. On the other hand, the users are not 

required to write the specification; instead, the dataflow 

specification is provided by the cloud system or the 

performance analyzer, and is either written by the 

developers of the cloud system (and/or the performance 

analyzer), or dynamically generated by the cloud 

runtime (e.g., by the Hive query compiler). The format 

of the dataflow specification is illustrated in Figure 7 

and described in detail below. 

• The Input (Output) section contains a list of 

<inputId: storage location> (<outputId: storage 

location>), where the storage location specifics 

which storage system (e.g., HDFS or MySQL) is 

used to store the input (output) data. 

• The Vertices section contains a list of <vertexId: 

program location>, where the program location 

specifies the portion of program (e.g., the 

corresponding thread or function) running on this 

graph vertex (i.e., processing stage). It is required 

that each execution position collected by the task 

execution sampler can be mapped to a unique 

program location in the specification, so that the 

analysis engine can determine which vertex each 

task execution sampling record belongs to. 

 
Figure 7. Dataflow specification of Big Data Cloud 

• The Edges section contains a list of <edgeId: 

inputId/vertexId�vertexId/outputId>, which defines 

all the graph edges (i.e., communication channels). 

• The Vertex Mapping section describes the high level 

resource mappings and parallelisms of the graph 

vertices. This section contains a list of Task Pool 

subsections; for each Task Pool subsection, the 

cloud runtime will launch several tasks (or processes) 

that can potentially run on the different nodes in 

parallel. The Task Pool subsection contains an 

ordered list of Phase subsections, and each task 

belonging to this task pool will sequentially execute 

these phases in the specified order. 

• The Phase subsection contains a list of Thread Pool 

or Thread Group Pool subsections; for each of these 

subsections, the associated task will spawn several 

//dataflow graph 

Input { //list of <inputId: storage location> 

In1: storage location 

… 

} 

Output { //list of <outputId: storage location> 

Out1: storage location 

… 

} 

Vertices { //list of <vertexId: program location> 

V1: program location 

… 

} 

Edges { //list of <edgeId: inputId/vertexId�vertexId/outputId> 

E1: In1�V1 

E2: V1�V2 

… 

} 

//resource mapping 

Vertex Mapping { //list of Task Pool 

Task Pool [(name)] <(cardinality)> { //ordered list of Phase  

Phase [(name)] { //list of Thread Pool or Thread Group Pool 

Thread Pool [(name)] <(cardinality)> { 

//ordered list of vertexId 

V1, V2, … 

} //end of Thread Pool 

Thread Group Pool [(name)] <(cardinality, group size)> { 

//a single vertexId 

V3 

} //end of Thread Group Pool 

.. 

} //end of Phase 

Phase [(name)] { … } 

… 

} //end of Task Pool 

Task Pool [(name)] <(cardinality)> { … } 

… 

} 

Edge Mapping { //list of <edgeId: edge type, endpoint location> 

E1: edge type, endpoint location  

… 

} 



threads or thread groups in parallel. The Thread 

Pool subsection contains an ordered list of vertexId, 

and each thread belonging to this thread pool will 

sequentially execute these vertices in the specified 

order. On the other hand, a number of threads (as 

determined by group size) in the thread group will 

run in concert with each other, executing the vertex 

specified in the Thread Group Pool subsection. 

• The cardinality of the Task Pool, Thread Pool or 

Thread Group Pool subsections determines the 

numbers of instances (i.e., processes, threads or 

thread groups) to be launched. It can have several 

values as follows. 

(1) N – exactly N instances will be launched. 

(2) 1~N – up to N instances will be launched. 

(3) 1~∞ – the number of instances to be launched is 

dynamically determined by the cloud runtime. 

• The Edge Mapping section contains a list of 

<edgeId: edge type, endpoint location>. The edge 

type specifies the physical implementation of the 

edge, such as network connection, local file or 

memory buffer. The endpoint location specifies the 

communication patterns between the vertices, which 

can be intra-thread/intra-task/intra-node (i.e., data 

transfer exists only between vertex instances running 

in the same thread, the same task and the same node 

respectively), or unconstrained. 

It is possible to extend the specification to support even 

more complex dataflow model and resource mappings 

(e.g., Process Group Pool); however, the current model 

is sufficient for all the Big Data cloud infrastructures 

that we have considered. For instance, the dataflow 

specification for our Hadoop cluster is shown in Figure 

8. 

4.3 Dataflow-Based Analysis 

As described in the previous sections, the program 

execution information collected by task execution 

samplers is generic in nature, and the dataflow model of 

the specific Big Data cloud is defined in a specification 

file. Based on these data, the analysis engine can re-

construct the dataflow execution process for the Big 

Data applications, and associate different performance 

activities with the high level dataflow model. In this 

way, our framework can be easily applied to different 

cloud systems by simply changing the specification file. 

We defer the detailed description of the dataflow 

construction algorithm to section 5.3. 

 
Figure 8. Hadoop dataflow specification 

5. HiTune: A Dataflow-Based Hadoop 
Performance Analyzer 

Based on our general performance analysis framework, 

we have implemented HiTune, a scalable, lightweight 

and extensible performance analyzer for Hadoop. In this 

section, we describe the implementation of HiTune, and 

in particular, how it is carefully engineered to meet our 

design goals that are described in section 2.3. 

5.1 Implementation of Tracker  

In our current implementation, all the nodes in the 

//Hadoop dataflow graph 

Input { //list of <inputId: storage location> 

Input:HDFS 

} 

Output { //list of <outputId: storage location> 

Output:HDFS 

} 

Vertices { //list of <vertexId: program location> 

map: MapTask.run 

spill: SpillThread.run 

copier: MapOutputCopier.run 

merge: InMemFSMergeThread.run or 

 LocalFSMerger.run 

sort: ReduceCopier.createKVIterator#ReduceCopier.access 

reduce:  runNewReducer or runOldReducer 

} 

Edges { //list of <edgeId: inputId/vertexId�vertexId/outputId> 

E1: Input�map 

E2: map�spill 

E3: spill�copier 

E4: copier�merge 

E5: merge�sort 

E6: sort�reduce 

E7: reduce�Output 

} 

Vertex Mapping { //list of Task Pool 

Task pool (Map) (1~∞) { //ordered list of Phase  

Phase { //list of Thread Pool or Thread Group Pool 

Thread Pool (1) {map} 

Thread Pool (1) {spill} 

} 

} 

Task Pool (Reduce) (1~∞) { 

Phase (shuffle) { 

Thread Group Pool (copy) (1, 20) {copier} 

Thread Group Pool (merge) (1, 2) {merge} 

} 

Phase { Thread Pool (1) {sort, reduce} } 

} 

} 

Edge Mapping { //list of <edgeId: edge type, endpoint location> 

    E1: HDFS, unconstrained 

E2: memory buffer, intra-task 

E3: HTTP, unconstrained  

E4: memory buffer, intra-task 

E5: memory buffer or local file, intra-task 

E6: memory buffer or local file, intra-thread 

E7: HDFS, unconstrained 

} 



Hadoop cluster are time synchronized (e.g., using a time 

service), and a tracker runs on each node in the cluster. 

Currently, the tracker consists of three samplers (i.e., 

task execution sampler, system sampler and log file 

sampler), and each sampler directly stores the sampling 

time in the Timestamp field of its sampling record. 

We have chosen to implement the task execution 

sampler using binary instrumentation techniques, so that 

it can instrument and collect the program execution 

information without any source code modifications. 

Specifically, the task execution sampler runs as a Java 

programming language agent [15]; whenever the 

Hadoop framework launches a JVM to be instrumented, 

it dynamically attaches to the JVM the sampler agent, 

which samples the Java thread stack trace and state for 

all the threads in the JVM at specified intervals (during 

the entire lifetime of the JVM). 

For each sampling record generated by the task 

execution sampler, its Target field contains the node 

name, the task name and the Java thread ID; and its 

value field contains the current execution position (i.e., 

the Java thread name and thread stack trace) as well the 

as the Java thread state. That is, the Target field is 

specified using the identifier of the runtime program 

instance (i.e., the thread ID), which allows the analysis 

engine to construct the entire sampling trace of each 

thread; in addition, the execution position is specified 

using the static program names (i.e., the Java thread 

name and method names), which allows the dataflow 

model and resource mappings to be easily described in 

the specification file. 

In addition, the system sampler simply reports the 

system statistics (e.g., CPU load, disk I/O, network 

bandwidth, etc.) periodically using the sysstat package, 

and the log sampler reports the Hadoop log information 

(including Hadoop metrics and job history files) 

whenever there is new log information. 

Since the tracker (especially the task execution sampler) 

needs to instrument the Hadoop tasks running on each 

node, it is the major source of performance overheads in 

HiTune. We have carefully designed and implemented 

the tracker (e.g., the task execution sampler caches the 

stack traces in memory and batches the write-out to the 

aggregation engine), so that it has very low (less than 

2% according to our measurement) performance 

impacts on Hadoop applications. 

5.2 Implementation of Aggregation Engine 

To ensure its scalability, the aggregation engine is 

implemented as a distributed data collection system, 

which can collect the sampling information from 

potentially thousands of nodes in the Hadoop cluster. In 

the current implementation, we have chosen to use 

Chukwa (a distributed log collection framework) as our 

aggregation engine. Every sampler in HiTune directly 

sends its sampling records to the Chukwa agent running 

on the local node, which in turn sends data to the 

Chukwa collectors over the network; the collector is 

responsible for storing the sampling data in a (separate) 

monitoring Hadoop/HDFS cluster. 

5.3 Implementation of Analysis Engine 

The sampling data for a Hadoop job can be potentially 

very large in size (e.g., about 100GB for TeraSort 

[16][17] in our cluster). We address the scalability 

challenge by first storing the sampling data in HDFS (as 

described in section 5.2), and then running the analysis 

engine as a Hadoop application on the monitoring 

Hadoop cluster in an offline fashion. 

Based on the Target field (i.e., the node name, the task 

name and the Java thread ID) of every task execution 

sampling record, the analysis engine first constructs a 

sampling trace for each thread (i.e., the sequence of all 

task execution sampling records belonging to that 

thread, ordered by the record timestamps) in the 

Hadoop job. 

The program location (used in the dataflow 

specification) can therefore be defined as a range of 

consecutive sampling records in one thread trace (or, in 

the case of thread group, multiple ranges each in a 

different thread). Each record range is identified by the 

starting and ending records, which are specified using 

their execution positions (i.e., partial stack traces). For 

instance, all the records between the first appearance 

and the last appearance of MapTask.run (or simply the 

MapTask.run method) constitute one instance of the 

map vertex. See Figure 8 for the detailed dataflow 

specification of our Hadoop cluster. 

Based on the Target and Timestamp fields of the two 

boundary records of corresponding program locations, 

the analysis engine then determines which machine each 

instance of a vertex runs on, when it starts and when it 

ends. Finally, it associates all the system and log file 

sampling records to each instance of the dataflow graph 

vertex (i.e., the processing stage), again using the 

Target and Timestamp information of the records. 

With the algorithm and dataflow specification described 

above, the analysis engine can easily reconstruct the 



dataflow execution for the Hadoop job and associates 

different sampling records with the dataflow graph. In 

addition, the performance analysis algorithm is itself 

implemented as a Hadoop application, which processes 

the sampling records for each JVM simultaneously. 

Consequently, we can generate various analysis reports 

that provide valuable insights into the Hadoop runtime 

behaviors (presented in the same dataflow model used 

in developing and running the Hadoop job). For 

instance, a timeline based execution chart for all task 

instances, similar to the pipeline space-time diagram 

[18], can be generated so that users can get a complete 

picture about the dataflow-based execution process of 

the Hadoop job. It is also possible to generate the 

hotspot breakdown (e.g., disk I/O vs. network transfer 

vs. computations) for each vertex in the dataflow, so 

that users can identify the possible bottlenecks in the 

Hadoop cluster. We show some analysis reports and 

how they are used to help our Hadoop performance 

analysis and tuning in section 7. 

6. Evaluations 

In this section, we experimentally evaluate the runtime 

overheads and scalability of HiTune, using three 

benchmarks (namely, Sort, WordCount and Nutch 

indexing) in the HiBench Hadoop benchmark suite [17], 

as shown in Table 1. The Hadoop cluster used in our 

experiment consists of one master (running JobTracker 

and NameNode) and up to 20 slaves (running 

TaskTracker and DataNode); the detailed server 

configurations are shown in Table 2. Every server has 

two GbE NICs, each of which is connected to a 

different gigabit Ethernet switch, forming two different 

networks; one network is used for the Hadoop jobs, and 

the other is used for administration and monitoring tasks 

(e.g., the Chukwa aggregation engine in HiTune). 

Table 1. Hadoop benchmarks 
Benchmark Input Data 

Sort 60GB generated by RandomWriter example. 

WordCount 60GB generated by RandomTextWriter example 

Nutch 

indexing 

19GB data generated by crawling an in-house 

Wikipedia mirror 
 

Table 2. Server configurations 
Processor Dual-socket quad-core Intel Xeon processor 

Disk 4 SATA 7200RPM HDDs   

Memory 24 GB ECC DRAM 

Network 2 Gigabit Ethernet NICs 

OS Redhat Enterprise Linux 5.4 
 

We evaluate the runtime overheads of HiTune by 

measuring the Hadoop performance (speed and 

throughput) as well as the system resource (e.g., CPU 

and memory) utilizations of the Hadoop cluster. The 

speed is measured using the job running time, and the 

throughput is defined as the number of tasks completed 

per minute when the Hadoop cluster is at full utilization 

(by continuously submitting multiple jobs to the cluster). 

In addition, we evaluate the scalability of HiTune by 

analyzing that, when there are more nodes in the 

Hadoop cluster, whether the runtime overheads increase 

and whether it becomes more complex for HiTune to 

conduct the dataflow-based performance analysis. 

6.1 Runtime Overheads 

As mentioned in section 5.1, the tracker (especially the 

task execution sampler) is the major source of runtime 

overheads in HiTune. This is because the task execution 

sampler needs to instrument the Hadoop tasks running 

on each node, while the aggregation and analysis of 

sampling data are performed on a separate monitoring 

cluster in an offline fashion. 

We first compare the instrumented Hadoop 

performance (measured when the tracker is running) 

and the baseline performance (measured when the 

tracker is completely turned off). In our experiment, 

when the tracker is running, the task execution sampler 

dumps the Java thread stack trace every 20 milliseconds, 

the system sampler reports the system statistics every 5 

seconds, and the Hadoop cluster is configured to output 

its metrics to the log file every 10 seconds. Figures 9 

and 10 show the ratio of the instrumented performance 

over the baseline performance for job running time 

(lower is better) and throughput (higher is better) 

respectively. It is clear that the overhead of running the 

tracker is very low in terms of performance – the 

instrumented job running time is longer than the 

baseline by less than 2%, and the instrumented 

throughput is lower than the baseline by less than 2%. 

In addition, we also compare the instrumented system 

resource utilizations (measured when the tracker is 

running) and the baseline utilizations (measured when 

only the system sampler is running, which is needed to 

report the system resource utilizations periodically). 

Since the sampling records are aggregated using a 

separate network, we only present the CPU and memory 

utilization results of the Hadoop cluster in this paper. 

Figures 11 and 12 show the ratio of the instrumented 

CPU and memory utilizations over the baseline 

utilizations respectively. It is clear that the overhead of 

running the tracker is also very low in terms of resource 

utilizations – either the instrumented CPU or memory 

utilization is higher than the baseline by less than 2%. 
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Figure 9. Ratio of instrumented job running time over 

baseline job running time 
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Figure 10. Ratio of instrumented cluster throughput 

over baseline cluster throughput 
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Figure 11.  Ratio of instrumented cluster CPU 

utilization over baseline cluster CPU utilization 
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Figure 12. Ratio of instrumented cluster memory 

utilization over baseline cluster memory utilization 

In summary, HiTune is a very lightweight performance 

analyzer for Hadoop, with very low (less than 2%) 

runtime overheads in terms of speed, throughput and 

system resource utilizations. In addition, HiTune scales 

very well in terms of the runtime overheads, because it 

instruments each node in the cluster independently and 

consequently the runtime overheads remain the same 

even when there are more nodes in the cluster (as 

confirmed by the experimental results).   

6.2 Complexity of Performance Analysis 

Since the analysis engine needs to re-construct the 

dataflow execution of a Hadoop job and associate the 

sampling records to each vertex instance in the dataflow, 

the complexity of analysis can be evaluated by 

comparing the sizes of sampling data and the numbers 

of vertex instances between different sized clusters. 

Figure 13 shows the sampling data sizes for the 5-, 10- 

and 20-slave clusters. It is clear that the sampling data 

sizes remain about the same (or increase very slowly) 

for different sized clusters (e.g., only less than 18% 

increase in the sample data size even when the cluster 

size is increased by 4x). Intuitively, since HiTune 

samples each instance of the processing stages at fixed 

time intervals, the sampling data size is proportional to 

the sum of the running time of all vertex instances. As 

long as the underlying Hadoop framework scales well 

with the cluster sizes, the sum of the vertex instance 

running time will remain about the same (or increase 

very slowly), and so does the sampling data size. In 

practice, even with very large (1000s of nodes) clusters, 

a MapReduce job usually runs on about 100s of worker 

machines [19], and the Hadoop framework scales 

reasonably well with that number (100s) of machines. 
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Figure 13.  Comparison of sampling data sizes 

In addition, assume M and R are the total numbers of 

the map and reduce tasks of a Hadoop job respectively. 

Since in the Hadoop dataflow model (as shown in 

Figure 8) each map task contains two stages and each 

reduce task contains four stages, the total number of 

vertex instances can be computed as 2*M+4*R. In 

practice, the number of map tasks is about 26x of that of 

reduce tasks in average for each MapReduce job [20], 

and therefore the vertex instance count is about 2.15*M. 

Since the number of map tasks (M) of a Hadoop job is 

typically determined by its input data size (e.g., by the 

number of HDFS file blocks), the number of vertex 

instances will also remain about the same for different 

sized clusters in practice. 



In summary, the complexity for HiTune to conduct the 

dataflow-based performance analysis will remain about 

the same even when there are more nodes in the cluster 

(or, more precisely, the dataflow-based performance 

analysis in HiTune scales as well as Hadoop does with 

the cluster sizes), because the sampling data sizes and 

the vertex instance counts will remain about the same 

even when there are more nodes in the cluster. In 

addition, we have implemented the analysis engine as a 

Hadoop application, so that the dataflow-based 

performance analysis can be parallelized using another 

monitoring Hadoop cluster. For instance, to process the 

100GB sampling data generated when running TeraSort 

in our cluster, it takes about 16 minutes on a single-

slave monitoring cluster, and about 5 minutes on a 4-

slave monitoring cluster. 

7. Experience 

HiTune has been used intensively inside Intel for 

Hadoop performance analysis and tuning (e.g., see [17]). 

In this section, we share our experience on how we use 

HiTune to efficiently conduct performance analysis and 

tuning for Hadoop, demonstrating the benefits of 

dataflow-based analysis and the limitations of existing 

approaches (e.g., system statistics, Hadoop logs and 

metrics, and traditional profiling). 

7.1 Tuning Hadoop Framework  

One performance issue we encountered is extremely 

low system utilizations when sorting many small files 

(3200 500KB-sized files) using Hadoop 0.20.1 – system 

statistics collected by the cluster monitoring tools (e.g., 

Ganglia [21]) show that the CPU, disk I/O and network 

bandwidth utilizations are all below 5%. That is, there 

are no obvious bottlenecks or hotspots in our cluster; 

consequently, traditional tools (e.g., system monitors 

and program profilers) fail to reveal the root cause. 

 
Figure 14. Dataflow execution for sorting many small 

files with Hadoop 0.20.1 

To address this performance issue, we used HiTune to 

reconstruct the dataflow execution process of this 

Hadoop job, as illustrated in Figure 14. The x-axis 

represents the elapse of wall clock time, and each 

horizontal line in the chart represents a map or reduce 

task. Within each line, bootstrap represents the period 

before the task is launched, idle represents the period 

after the task is complete, map represents the period 

when the map task is running, and shuffle, sort and 

reduce represent the periods when (the instances of) the 

corresponding stages are running respectively.  

As is obvious in the dataflow execution, there are few 

parallelisms between the Map tasks, or between the 

Map tasks and Reduce tasks in this job. Clearly, the task 

scheduler in Hadoop 0.20.1 (Fair Scheduler [22] is 

used in our cluster) fails to launch all the tasks as soon 

as possible in this case. Once the problem is isolated, 

we quickly identified the root cause – by default, the 

Fair Scheduler in Hadoop 0.20.1 only assigns one task 

to a slave at each heartbeat (i.e., the periodical keep-

alive message between the master and slaves), and it 

schedules map tasks first whenever possible; in our job, 

each map task processes a small file and completes very 

fast (faster than the heartbeat interval), and 

consequently each slave runs the map tasks sequentially 

and the reduce tasks are scheduled after all the map 

tasks are done.  

To fix this performance issue, we upgraded the cluster 

to Fair Scheduler 2.0 [23][24], which by default 

schedules multiple tasks (including reduce tasks) in 

each heartbeat; consequently the job runs about 6x 

faster (as shown in Figure 15) and the cluster utilization 

is greatly improved. 

 
Figure 15. Dataflow execution for sorting many small 

files with Fair Scheduler 2.0 

7.2 Analyzing Application Hotspots 

In the previous section, we demonstrate that the high 

level dataflow execution process of a Hadoop job helps 

users to understand the dynamic task scheduling and 

assignment of the Hadoop framework. In this section, 



we show that the dataflow execution process helps users 

to identify the data shuffle gaps between map and 

reduce, and that relating the low level performance 

activities to the high level dataflow model allows users 

to conduct fine-grained, dataflow-based hotspot 

breakdown (so as to understand the hotspots of the 

massively distributed applications). 

Figure 16 shows the dataflow execution, as well as the 

timeline based CPU, disk and network bandwidth 

utilizations of TeraSort [16][17] (sorting 10 billion 100-

byte records). It has high CPU utilizations during the 

map tasks, because the map output data are compressed 

(using the default codec in Hadoop) to reduce the disk 

and network I/O. (Compressing the input or output of 

TeraSort is not allowed in the benchmark specs).  

 

 

 

 
Figure 16. TeraSort (using default compression codec) 

However, the dataflow execution process of TeraSort 

shows that there is a large gap (about 15% of the total 

job running time) between the end of map tasks and the 

end of shuffle phases. According to the communication 

patterns specified in the Hadoop dataflow model (see 

Figure 2 and Figure 8), shuffle phases need to fetch the 

output from all the map tasks in the copier stages, and 

ideally should complete as soon as all the map tasks 

complete. Unfortunately, traditional tools or Hadoop 

logs fail to reveal the root cause of the large gap, 

because during that period, none of the CPU, disk I/O 

and network bandwidth are bottlenecked, the “Shuffle 

Fetchers Busy Percent” metric reported by the Hadoop 

framework is always 100%, while increasing the 

number of copier threads does not improve the 

utilization or performance.  

To address this issue, we used HiTune to conduct 

hotspot breakdown of the shuffle phases, which is 

possible because HiTune has associated all the low 

level sampling records with the high level dataflow 

execution of the Hadoop job. The dataflow-based 

hotspot breakdown (see Figure 17) shows that, in the 

shuffle stages, the copier threads are actually idle 80% 

of the time, waiting (in the ShuffleRamManager. 

reserve method) for the occupied memory buffers to be 

freed by the memory merge threads. (The idle vs. busy 

breakdown and the method hotspot are determined 

using the Java thread state and stack trace in the task 

execution sampling records respectively). On the other 

hand, most of the busy time of the memory merge 

thread is due to the compression, which is the root cause 

of the large gap between map and shuffle. To fix this 

issue and reduce the compression hotspots, we changed 

the compression codec to LZO [25], which improves the 

TeraSort performance by more than 2x and completely 

eliminates the gap (see Figure 18). 

 
Figure 17. Copier and Memory Merge threads 

breakdown (using default compression codec) 

 
Figure 18. TeraSort (using LZO compression) 

7.3 Diagnosing Hardware Problems 

By examining Figure 18 in more detail, we also found 

that the reduce stage running time is significantly 

skewed among different reduce tasks – a small number 

of stages are much slower than the others, as shown in 

Figure 19.  

 
Figure 19. Reduce tasks of TeraSort (using LZO 

compression) 

gap 



Based on the association of the low level sampling 

records and the high level dataflow model, we use 

HiTune to generate the normalized average running 

time and the idle vs. busy breakdown of the reduce 

stages (grouped by the Tasktrackers that the stages run 

on) in Figure 20. It is clear that reduce stages running 

on the 3
rd

 and 7
th

 TaskTrackers are much slower (about 

20% and 14% slower than the average respectively). In 

addition, while all the reduce stages have about the 

same busy time, the reduce stages running on these two 

TaskTrackers have more idle time, waiting in the 

DFSOutputStream.writeChunk method (i.e., writing 

data to HDFS). Since the data replication factor in 

TeraSort is set to 1 (as required by the benchmark 

specs), the HDFS write operations in the reduce stage 

only writes to the local disks. By examining the average 

write bandwidth of the disks on these two TaskTrackers, 

we finally identified the root cause of this problem – 

there is one disk on each of these two nodes that is 

much slower than other disks in the cluster (about 44% 

and 30% slower than the average respectively), which is 

later confirmed to have bad sectors through a very 

expensive fsck process. 
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Figure 20. Normalized average running time and busy 

vs. idle breakdown of reduce stages  

7.4 Extending HiTune to Other Systems 

Since the initial release of HiTune inside Intel, it has 

been extended by the users in different ways to meet 

their requirements. For instance, new samplers are 

added so that processor microarchitecture events and 

power state behaviors of Hadoop jobs can be analyzed 

using the dataflow model.  

In addition, HiTune has also been applied to Hive (an 

open source data warehouse built on top of Hadoop), by 

extending the original Hadoop dataflow model to 

include additional phases and stages, as illustrated in 

Figure 21. The map stage is divided into 5 smaller 

stages – namely, Stage Init, Hive Init, Hive Active, Hive 

Close and Stage close; in addition, the reduce stage is 

divided into 4 smaller stages – namely, Hive Iinit, Hive 

Active, Hive Close and Stage Close. This is 

accomplished by providing to the analysis engine a new 

specification file that describes the dataflow model and 

resource mappings in Hive. 

Hive 

Init

Hive 

Active

Hive 

Close

Hive Processing Period

Active 

Hive data flow stage timeline

map stage timeline

Stage 

Init

Stage 

Close

Hive 

Init

Hive 

Active

Hive 

Close

Stage 

Init

Hive 

Init

Hive 

Active

Hive 

Close

Hive Processing Period

Active 

Hive data flow stage timeline

map stage timeline

Stage 

Init

Stage 

Close

Hive 

Init

Hive 

Active

Hive 

Close

Stage 

Init

 

Hive Processing Period

Active 

Hive data flow stage timeline

reduce stage timeline

Stage 

Close

Hive 

Init

Hive 

Active

Hive 

Close

Hive Processing Period

Active 

Hive data flow stage timeline

reduce stage timeline

Stage 

Close

Hive 

Init

Hive 

Active

Hive 

Close

 
Figure 21. Extended dataflow model for Hive 
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Figure 22. Dataflow execution of the Hive query 
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Figure 23. Map stage breakdown 
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Figure 24. Reduce stage breakdown 

Figure 22 shows the dataflow execution process for the 

aggregation query in Hive performance benchmarks 

[26][9]. In addition, Figures 23 and 24 show the 

dataflow-based breakdown of the map/reduce stages for 

the aggregation query (both the map and reduce Hive 

active stages are further broken into 3 portions: Hive 

Input, Hive Operation and Hive Output based on the 

Java methods). As shown in Figures 23 and 24, the 

query spends only about 32% of its time performing the 

Hive Operations; on the other hand, it spends about 

68% of its time on the data input/output, as well as the 

initialization and cleanup of the Hadoop/Hive 

frameworks. Therefore, to optimize this Hive query, it 

is more critical to reduce the size of intermediate results, 



to improve the efficiency of data input/output, and to 

reduce the overheads of the Hadoop/Hive frameworks.  

8. Related Work 

There are several distributed system tracing tools (e.g., 

Magpie [27], X-Trace [28] and Dapper [29]), which 

associates and propagates the tracing metadata as the 

request passes through the system. With this type of 

path information, the tracing tools can easily construct 

an event graph capturing the causality of events across 

the system, which can be then queried for various 

analyses [30]. Unfortunately, these tools would require 

changes not only to source codes but also to message 

schemas, and are usually restricted to a small portion of 

the system in practice (e.g., Dapper only instruments the 

threading, callback and RPC libraries in Google [29]). 

In contrast, our approach uses binary instrumentations 

to sample the tasks in a distributed and independent 

fashion at each node, and reconstructs the dataflow 

execution process of the application based on a priori 

knowledge of Big Data Cloud. Consequently, it requires 

no modifications to the system, and therefore can be 

applied more extensively to obtain richer information 

(e.g., the hottest function) than these tracing tools. 

Our distributed instrumentations are similar to Google-

Wide Profiling (GWP) [31], which samples across 

machines in multiple data centers for production 

applications. In addition, the current Hadoop framework 

can profile specific map/reduce tasks using traditional 

Java profilers (e.g., HPROF [32]), which however have 

very high overheads and are usually applied to a small 

(2 or 3) number of tasks. More importantly, both GWP 

and the existing profiling support in Hadoop focus on 

providing traditional performance analysis to the 

distributed systems (e.g., by allowing the users to 

directly query the low level sampling data). In contrast, 

our key technical challenge is to reconstruct the high 

level dataflow execution of the application based on the 

low level sampling data, so that users can work on the 

same dataflow model used in developing and running 

their Big Data applications. 

In the industry, traditional cluster monitoring tools (e.g., 

Ganglia [21], Nagios [33] and Cacti [34]) have been 

widely used to collect system statistics (e.g., CPU load) 

from all the machines in the cluster; in addition, several 

large-scale log collection systems (e.g., Chukwa [12], 

Scribe [13] and Flume [14]) have been recently 

developed to aggregate log data from a large number of 

servers. All of these tools focus on providing a 

distributed framework to collect statistics and logs, and 

are orthogonal to our work (e.g., we have actually used 

Chukwa as the aggregation engine in the current 

HiTune implementation). 

Existing diagnostic tools for Hadoop and Dryad (e.g., 

Vaidya [35], Kahuna [36] and Artemis [37]) focus on 

mining the system logs to detect performance problems. 

For instance, it is possible to construct the task 

execution chart (as shown in section 7.1) using the 

Hadoop job history files. Compared to these tools, our 

approach (based on distributed instrumentation and 

dataflow-driven performance analysis) has many 

advantages. First, it can provide much more insights, 

such as dataflow-based hotspot breakdown (see sections 

7.2 and 7.3), into the cloud runtime behaviors. More 

importantly, performance problems of massively 

distributed systems are very complex, and are often due 

to issues that the developers are completely unaware of 

(and therefore are not exposed by the existing codes or 

logs). For instance, in section 7.2, the Hadoop 

framework shows that the shuffle fetchers are always 

busy, while detailed breakdown provided by HiTune 

reveals that copiers are actually idle most of the time. 

Finally, our approach is much more general, and 

consequently can be easily extended to support other 

systems such as Hive (see section 7.4). 

9. Conclusions 

In this paper, we propose a general approach of 

performance analysis for Big Data Cloud, based on 

distributed instrumentations and dataflow-driven 

performance analysis. Based on this approach, we have 

implemented HiTune (a Hadoop performance analyzer), 

which provide valuable insights into the Hadoop 

runtime behaviors with every low overhead, no source 

code changes, very good scalability and extensibility. 

We also report our experience on how to use HiTune to 

efficiently conduct performance analysis and tuning for 

Hadoop, demonstrating the benefits of dataflow-based 

analysis and the limitations of existing approaches. 
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