
HiTune: Dataflow-Based Performance Analysis for Big Data Cloud

Jinquan Dai, Jie Huang, Shengsheng Huang, Bo Huang, Yan Liu

Intel Asia-Pacific Research and Development Ltd

Shanghai, P.R.China, 200241

{jason.dai, jie.huang, shengsheng.huang, bo.huang, yan.b.liu}@intel.com

Abstract

Although Big Data Cloud (e.g., MapReduce, Hadoop

and Dryad) makes it easy to develop and run highly

scalable applications, efficient provisioning and fine-

tuning of these massively distributed systems remain a

major challenge. In this paper, we describe a general

approach to help address this challenge, based on

distributed instrumentations and dataflow-driven

performance analysis. Based on this approach, we have

implemented HiTune, a scalable, lightweight and

extensible performance analyzer for Hadoop. We report

our experience on how HiTune helps users to efficiently

conduct Hadoop performance analysis and tuning,

demonstrating the benefits of dataflow-based analysis

and the limitations of existing approaches (e.g., system

statistics, Hadoop logs and metrics, and traditional

profiling).

1. Introduction

There are dramatic differences between delivering

software as a service in the cloud for millions to use,

versus distributing software as bits for millions to run

on their PCs. First and foremost, services must be

highly scalable, storing and processing an enormous

amount of data. For instance, in June 2010, Facebook

reported 21PB raw storage capacity in their internal

data warehouse, with 12TB compressed new data added

every day and 800TB compressed data scanned daily

[1]. This type of “Big Data” phenomenon has led to the

emergence of several new cloud infrastructures (e.g.,

MapReduce [2], Hadoop [2], Dryad [4], Pig [5] and

Hive [6]), characterized by the ability to scale to

thousands of nodes, fault tolerance and relaxed

consistency. In these systems, the users can develop

their applications according to a dataflow graph (either

implicitly dictated by the programming/query model or

explicitly specified by the users). Once an application is

cast into the system, the cloud runtime is responsible for

dynamically mapping the logical dataflow graph to the

underlying cluster for distributed executions.

With these Big Data cloud infrastructures, the users are

required to exploit the inherent data parallelism exposed

by the dataflow graph when developing the applications;

on the other hand, they are abstracted away from the

messy details of data partitioning, task distribution, load

balancing, fault tolerance and node communications.

Unfortunately, this abstraction makes it very difficult, if

not impossible, for the users to understand the cloud

runtime behaviors. Consequently, although Big Data

Cloud makes it easy to develop and run highly scalable

applications, efficient provisioning and fine-tuning of

these massively distributed systems remain a major

challenge. To help address this challenge, we attempt to

design tools that allow users to understand the runtime

behaviors of Big Data Cloud, so that they can make

educated decisions regarding how to improve the

efficiency of these massively distributed systems – just

as what traditional performance analyzers do for a

single execution of a single program.

Unfortunately, performance analysis for Big Data Cloud

is particularly challenging, because these applications

can potentially comprise several thousands of programs

running on thousands of machines, and the low level

performance details are hidden from the users by using

a high level dataflow model. In this paper, we describe

a specific solution to this problem based on distributed

instrumentations and dataflow-driven performance

analysis, which correlates concurrent performance

activities across different programs and machines,

reconstructs the dataflow-based, distributed execution

process of the Big Data application, and relates the low

level performance activities to the high level dataflow

model.

Based on this approach, we have implemented HiTune,

a scalable, lightweight and extensible performance

analyzer for Hadoop. We report our experience on how

HiTune helps users to efficiently conduct Hadoop

performance analysis and tuning, demonstrating the

benefits of dataflow-based analysis and the limitations

of existing approaches (e.g., system statistics, Hadoop

logs and metrics, and traditional profiling). For instance,

reconstructing the dataflow execution process of a

Hadoop job allows users to understand the dynamic

interactions between different tasks and stages (e.g.,

task scheduling and data shuffle; see sections 7.1 and

7.2). In addition, relating performance activities to the

dataflow model allows users to conduct fine-grained,

dataflow-based hotspot breakdown (e.g., for identifying

application hotspots and hardware problems; see

sections 7.2 and 7.3).

The rest of the paper is organized as follows. In section

2, we introduce the motivations and objectives of our

work. We give an overview of our approach in section 3,

and present the dataflow-based performance analysis in

section 4. In section 5, we describe the implementation

of HiTune, a performance analyzer for Hadoop. We

experimentally evaluate HiTune in section 6, and report

our experience in section 7. We discuss the related work

in section 8, and finally conclude the paper in section 9.

2. Problem Statement

In this section, we describe the motivations, challenges,

goals and non-goals of our work.

2.1 Big Data Cloud

In Big Data Cloud, the input applications are modeled

as directed acyclic dataflow graphs to the users, where

graph vertices represent processing stages and graph

edges represent communication channels. All the data

parallelisms of the computation and the data

dependencies between processing stages are explicitly

encoded in the dataflow graph. The users can develop

their applications by simply supplying programs that

run on the vertices to these systems; on the other hand,

they are abstracted away from the low level details of

the distributed executions of their applications. The

cloud runtime is responsible for dynamically mapping

the logical dataflow graph to the underlying cluster,

including generating the optimized dataflow graph of

execution plans, assigning the vertices and edges to

physical resources, scheduling and executing each

vertex (usually using multiple instances and possibly

multiple times due to failures).

For instance, the MapReduce model dictates a two-

stage group-by-aggregation dataflow graph to the users,

as shown in Figure 1. A MapReduce application has

one input that can be trivially partitioned. In the first

stage a Map function, which specifies how the grouping

is performed, is applied to each partition of input data.

In the second stage a Reduce function, which performs

the aggregation, is applied to each group produced by

the first stage. The MapReduce framework is then

responsible for mapping this logical dataflow graph to

the physical resources. For instance, the Hadoop

framework automatically executes the input MapReduce

application using an internal dataflow graph of

execution plan, as shown in Figure 2. The input data is

divided into splits, and a distinct Map task is launched

for each split. Inside each Map task, the map stage

applies the Map function to the input data, and the spill

stage stores the map output on local disks. In addition, a

distinct Reduce task is launched for each partition of the

map outputs. Inside each Reduce task, the copier and

merge stages run in a pipelined fashion, fetching the

relevant partition over the network and merging the

fetched data respectively; after that, the sort and reduce

stages merge the reduce inputs and apply the Reduce

function respectively.

D

A

T

A

MAP

MAP

MAP

MAP

RE

DU

CE

Partitioned
Input

Aggregated
Output

Figure 1. Dataflow graph of a MapReduce application

spill

Streaming dataflow

D

A

A

map

map

map

map

reduce

Aggregated
Output

Partitioned
Input

copier

copier

copier
sort

sort

sortmerge

merge

merge

reduce

reduce

Sequential dataflow

shuffle

shuffle

shuffle

spill

Spill

spill

T

Map Tasks Reduce Tasks

Figure 2. Dataflow graph of the Hadoop execution plan

Figure 3. The Pig program [5] and Hive query example

In addition, the Pig and Hive systems allow the users to

perform ad-hoc analysis of Big Data on top of Hadoop,

using dataflow-style scripts and SQL-like queries

respectively. For instance, Figure 3 shows the Pig

program (an example in the original Pig paper [5]) and

Hive query for the same operation (i.e., finding, for

each sufficiently large category, the average pagerank

of high-pagerank urls in that category). In these two

systems, the logical dataflow graph of the operation is

implicitly dictated by the language or query model, and

Pig Script

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls)>1000000;

output = FOREACH big_groups GENERATE category,

 AVG(good_urls.pagerank);

Hive Query

SELECT category, AVG(pagerank)

FROM (SELECT category, pagerank, count(1) AS recordnum

 FROM urls WHERE pagerank > 0.2

 GROUP BY category) big_groups

WHERE big_groups.recordnum > 1000000

is automatically compiled into the physical execution

plan (another dataflow graph) that is executed on the

underlying Hadoop system.

Unlike the aforementioned systems that restrict their

applications’ dataflow graph, the Dryad system allows

the users to specify an arbitrary directed acyclic graph

to describe the application, as illustrated in Figure 4 (an

example in the Dryad website [7]). The cloud runtime

then refines the input dataflow graph and executes the

optimized execution plan on the underlying cluster.

Figure 4. Dataflow graph of a Dryad application [7]

2.2 Motivations and Challenges

By exposing data parallelisms through the dataflow

model and hiding the low level details of the underlying

cluster, Big Data Cloud allows users to work at the

appropriate level of abstraction, which makes it easy to

develop and run highly scalable applications.

Unfortunately, this abstraction makes it very difficult, if

not impossible, for users to understand the cloud

runtime behaviors. Consequently, it remains as a big

challenge to efficiently provision and tune these

massively distributed systems, which entails requesting

and allocating the optimal number of (physical or

virtual) resources, and optimizing the system and

applications for better resource utilizations.

As Big Data Cloud grows in pervasiveness and scale,

addressing this challenge becomes critically important

(for instance, tuning Hadoop jobs is considered as a

very difficult problem and requires a lot of efforts on

understanding Hadoop internals in Hadoop community

[8]; in addition, lack of tuning tools for Hadoop often

forces users to resort to trial and error tuning [9]). This

motivates our work to design tools that allows users to

understand the runtime behaviors of Big Data

applications, so that they can make educated decisions

regarding how to improve the efficiency of these

massively distributed systems – just as what traditional

performance analyzers (e.g., gprof [10] and Intel VTune

[11]) do for a single execution of a single program.

Unfortunately, performance analysis for Big Data Cloud

is particularly challenging due to its unique properties.

• Massively distributed systems: Each Big Data

application is a complex distributed application,

which may comprise tens of thousands of

processes and threads running on thousands of

machines. Understanding system behaviors in this

context would require correlating concurrent

performance activities (e.g., CPU cycles, retired

instructions, lock contentions, etc.) across many

programs and machines with each other.

• High level abstractions: Big Data Cloud allows

users to work at an appropriately high level of

abstraction, by hiding the messy details of

parallelisms behind the dataflow model and

dynamically instantiating the dataflow graph

(including resource allocations, task scheduling,

fault tolerance, etc.). Consequently, it is very

difficult, if not impossible, for users to understand

how the low level performance activities can be

related to the high level abstraction (which they

have used to develop and run their applications).

In this paper, we address these technical challenges

through distributed instrumentations and dataflow-

driven performance analysis. Our approach allows users

to easily associate different low level performance

activities with the high level dataflow model, and

provide valuable insights into the runtime behaviors of

Big Data Cloud and applications.

2.3 Goals and Non-Goals

Our goal is to design tools that help users to efficiently

conduct performance analysis for Big Data Cloud. In

particular, we want our tools to be broadly applicable to

many different applications and systems, and to be

applicable to even production systems (because it is

often impossible to reproduce the cloud behaviors given

the scale of Big Data Cloud). Several concrete design

goals result from these requirements.

• Low overhead: It is critical that our tools have

negligible (e.g., less than a few percent)

performance impacts on the running applications.

• No source code modifications: Our tools should

not require any modifications to the cloud runtime,

middleware, messages, or applications.

• Scalability: Our tools need to handle applications

that potentially comprise tens of thousands of

processes/threads running on thousands of servers.

• Extensibility: We would like our tools to be

flexible enough so that it can be easily extended to

support different cloud systems.

We also have several non-goals.

• We are not developing tools that can replace the

need for developers (e.g., by automatically

allocating the right amount of resources).

Performance analysis for distributed systems is

hard, and our goal is to make it easier for users,

not to automate it.

• Our tools are not meant to verify the correct

system behaviors, or diagnose the cause of faulty

behaviors.

3. Overview of Our Approach

Our approach relies on distributed instrumentations on

each node in the cloud, and then aggregating all the

instrumentation results for dataflow-based analysis. The

performance analysis framework consists of three major

components, namely tracker, aggregation engine and

analysis engine, as illustrated in Figure 5.

Figure 5. Performance analysis framework

Timestamp Type Target Value

Figure 6. Format of the sampling record

The tracker is a lightweight agent running on every

node. Each tracker has several samplers, which inspect

the runtime information of the programs and system

running on the local node (either periodically or based

on specific events), and sends the sampling records to

the aggregation engine. Each sampling record is of the

format shown in figure 6.

• Timestamp is the sampling time for each record.

Since the nodes in the cloud are usually in the

same administrative domain and highly connected,

it is easy to have all the nodes time-synchronized

(e.g., in Hadoop all the slaves exchange heartbeat

messages with the master periodically and the

time synchronization information can be easily

piggybacked); consequently the sampler can

directly record its sampling time. Alternatively,

the sampler can send the sampling record to the

aggregation engine in real-time, which can then

record the receiving time.

• Type specifies the type of the sampling record

(e.g., CPU cycles, disk bandwidth, log files, etc.).

• Target specifies the source of the sampling record.

It contains the name of the local node, as well as

other sampler-specific information (e.g., CPUID,

network interface name or log file name).

• Value contains the detailed sampling information

of this record (e.g., CPU load, network bandwidth

utilization, or a line/record in the log file).

The aggregation engine is responsible for collecting the

sampling information from all the trackers in a

distributed fashion, and storing the sampling

information in a separate monitoring cluster for analysis.

Any distributed log collection tools (e.g., Chukwa [12],

Scribe [13] and Flume [14]) can be used as the

aggregation engine. In addition, the analysis engine runs

on the monitoring cluster, and is responsible for

conducting the performance analysis and generating the

analysis report, using the collected sampling

information and a specification file describing the

logical dataflow model of the specific Big Data cloud.

4. Dataflow-Based Performance Analysis

In order to help users to understand the runtime

behaviors of Big Data Cloud, our framework presents

the performance analysis results in the same dataflow

model that is used in developing and running the

applications. The key technical challenge is to re-

construct the high level, dataflow-based, distributed and

dynamic execution process for each Big Data

application, based on the low level sampling records

collected across different programs and machines. We

address this challenge by:

1) Running a task execution sampler on every node

to collect the execution information of each task

in the application.

2) Describing the high level dataflow model of Big

Data Cloud in a specification file provided to the

analysis engine.

3) Constructing the dataflow execution process for

the application based the dataflow specification

and the program execution information.

4.1 Task Execution Sampler

To collect the program execution information, the task

execution sampler instruments the cloud runtime and

tasks running on the local node, and stores associated

information into its sampling records at fixed time

intervals as follows.

• The Target field of the sampling record needs to

store the identifier (e.g., application name, task

name, process ID and/or thread ID) of the

program that is instrumented to collect this piece

of sampling information.

• The Value field of the sampling record must

contain the execution position of the program (e.g.,

thread name, stack trace, basic-block ID and/or

instruction address) at which the program is

running when it is instrumented to collect this

piece of sampling information.

In practice, the task execution sampler can be

implemented using any traditional instrumentation tool

(which runs on a single machine), such as Intel VTune.

4.2 Dataflow Specification

In order for the analysis engine to efficiently conduct

the dataflow-based analysis, the dataflow specification

needs to describe not only the dataflow graph (e.g.,

vertices and edges), but also the high level resource

mappings of the dataflow model (e.g., physical

implementations of vertices/edges, parallelisms between

different phases/stages, and communication patterns

between different stages). Consequently, the dataflow

specification does require a priori knowledge of the

cloud system. On the other hand, the users are not

required to write the specification; instead, the dataflow

specification is provided by the cloud system or the

performance analyzer, and is either written by the

developers of the cloud system (and/or the performance

analyzer), or dynamically generated by the cloud

runtime (e.g., by the Hive query compiler). The format

of the dataflow specification is illustrated in Figure 7

and described in detail below.

• The Input (Output) section contains a list of

<inputId: storage location> (<outputId: storage

location>), where the storage location specifics

which storage system (e.g., HDFS or MySQL) is

used to store the input (output) data.

• The Vertices section contains a list of <vertexId:

program location>, where the program location

specifies the portion of program (e.g., the

corresponding thread or function) running on this

graph vertex (i.e., processing stage). It is required

that each execution position collected by the task

execution sampler can be mapped to a unique

program location in the specification, so that the

analysis engine can determine which vertex each

task execution sampling record belongs to.

Figure 7. Dataflow specification of Big Data Cloud

• The Edges section contains a list of <edgeId:

inputId/vertexId�vertexId/outputId>, which defines

all the graph edges (i.e., communication channels).

• The Vertex Mapping section describes the high level

resource mappings and parallelisms of the graph

vertices. This section contains a list of Task Pool

subsections; for each Task Pool subsection, the

cloud runtime will launch several tasks (or processes)

that can potentially run on the different nodes in

parallel. The Task Pool subsection contains an

ordered list of Phase subsections, and each task

belonging to this task pool will sequentially execute

these phases in the specified order.

• The Phase subsection contains a list of Thread Pool

or Thread Group Pool subsections; for each of these

subsections, the associated task will spawn several

//dataflow graph

Input { //list of <inputId: storage location>

In1: storage location

…

}

Output { //list of <outputId: storage location>

Out1: storage location

…

}

Vertices { //list of <vertexId: program location>

V1: program location

…

}

Edges { //list of <edgeId: inputId/vertexId�vertexId/outputId>

E1: In1�V1

E2: V1�V2

…

}

//resource mapping

Vertex Mapping { //list of Task Pool

Task Pool [(name)] <(cardinality)> { //ordered list of Phase

Phase [(name)] { //list of Thread Pool or Thread Group Pool

Thread Pool [(name)] <(cardinality)> {

//ordered list of vertexId

V1, V2, …

} //end of Thread Pool

Thread Group Pool [(name)] <(cardinality, group size)> {

//a single vertexId

V3

} //end of Thread Group Pool

..

} //end of Phase

Phase [(name)] { … }

…

} //end of Task Pool

Task Pool [(name)] <(cardinality)> { … }

…

}

Edge Mapping { //list of <edgeId: edge type, endpoint location>

E1: edge type, endpoint location

…

}

threads or thread groups in parallel. The Thread

Pool subsection contains an ordered list of vertexId,

and each thread belonging to this thread pool will

sequentially execute these vertices in the specified

order. On the other hand, a number of threads (as

determined by group size) in the thread group will

run in concert with each other, executing the vertex

specified in the Thread Group Pool subsection.

• The cardinality of the Task Pool, Thread Pool or

Thread Group Pool subsections determines the

numbers of instances (i.e., processes, threads or

thread groups) to be launched. It can have several

values as follows.

(1) N – exactly N instances will be launched.

(2) 1~N – up to N instances will be launched.

(3) 1~∞ – the number of instances to be launched is

dynamically determined by the cloud runtime.

• The Edge Mapping section contains a list of

<edgeId: edge type, endpoint location>. The edge

type specifies the physical implementation of the

edge, such as network connection, local file or

memory buffer. The endpoint location specifies the

communication patterns between the vertices, which

can be intra-thread/intra-task/intra-node (i.e., data

transfer exists only between vertex instances running

in the same thread, the same task and the same node

respectively), or unconstrained.

It is possible to extend the specification to support even

more complex dataflow model and resource mappings

(e.g., Process Group Pool); however, the current model

is sufficient for all the Big Data cloud infrastructures

that we have considered. For instance, the dataflow

specification for our Hadoop cluster is shown in Figure

8.

4.3 Dataflow-Based Analysis

As described in the previous sections, the program

execution information collected by task execution

samplers is generic in nature, and the dataflow model of

the specific Big Data cloud is defined in a specification

file. Based on these data, the analysis engine can re-

construct the dataflow execution process for the Big

Data applications, and associate different performance

activities with the high level dataflow model. In this

way, our framework can be easily applied to different

cloud systems by simply changing the specification file.

We defer the detailed description of the dataflow

construction algorithm to section 5.3.

Figure 8. Hadoop dataflow specification

5. HiTune: A Dataflow-Based Hadoop
Performance Analyzer

Based on our general performance analysis framework,

we have implemented HiTune, a scalable, lightweight

and extensible performance analyzer for Hadoop. In this

section, we describe the implementation of HiTune, and

in particular, how it is carefully engineered to meet our

design goals that are described in section 2.3.

5.1 Implementation of Tracker

In our current implementation, all the nodes in the

//Hadoop dataflow graph

Input { //list of <inputId: storage location>

Input:HDFS

}

Output { //list of <outputId: storage location>

Output:HDFS

}

Vertices { //list of <vertexId: program location>

map: MapTask.run

spill: SpillThread.run

copier: MapOutputCopier.run

merge: InMemFSMergeThread.run or

 LocalFSMerger.run

sort: ReduceCopier.createKVIterator#ReduceCopier.access

reduce: runNewReducer or runOldReducer

}

Edges { //list of <edgeId: inputId/vertexId�vertexId/outputId>

E1: Input�map

E2: map�spill

E3: spill�copier

E4: copier�merge

E5: merge�sort

E6: sort�reduce

E7: reduce�Output

}

Vertex Mapping { //list of Task Pool

Task pool (Map) (1~∞) { //ordered list of Phase

Phase { //list of Thread Pool or Thread Group Pool

Thread Pool (1) {map}

Thread Pool (1) {spill}

}

}

Task Pool (Reduce) (1~∞) {

Phase (shuffle) {

Thread Group Pool (copy) (1, 20) {copier}

Thread Group Pool (merge) (1, 2) {merge}

}

Phase { Thread Pool (1) {sort, reduce} }

}

}

Edge Mapping { //list of <edgeId: edge type, endpoint location>

 E1: HDFS, unconstrained

E2: memory buffer, intra-task

E3: HTTP, unconstrained

E4: memory buffer, intra-task

E5: memory buffer or local file, intra-task

E6: memory buffer or local file, intra-thread

E7: HDFS, unconstrained

}

Hadoop cluster are time synchronized (e.g., using a time

service), and a tracker runs on each node in the cluster.

Currently, the tracker consists of three samplers (i.e.,

task execution sampler, system sampler and log file

sampler), and each sampler directly stores the sampling

time in the Timestamp field of its sampling record.

We have chosen to implement the task execution

sampler using binary instrumentation techniques, so that

it can instrument and collect the program execution

information without any source code modifications.

Specifically, the task execution sampler runs as a Java

programming language agent [15]; whenever the

Hadoop framework launches a JVM to be instrumented,

it dynamically attaches to the JVM the sampler agent,

which samples the Java thread stack trace and state for

all the threads in the JVM at specified intervals (during

the entire lifetime of the JVM).

For each sampling record generated by the task

execution sampler, its Target field contains the node

name, the task name and the Java thread ID; and its

value field contains the current execution position (i.e.,

the Java thread name and thread stack trace) as well the

as the Java thread state. That is, the Target field is

specified using the identifier of the runtime program

instance (i.e., the thread ID), which allows the analysis

engine to construct the entire sampling trace of each

thread; in addition, the execution position is specified

using the static program names (i.e., the Java thread

name and method names), which allows the dataflow

model and resource mappings to be easily described in

the specification file.

In addition, the system sampler simply reports the

system statistics (e.g., CPU load, disk I/O, network

bandwidth, etc.) periodically using the sysstat package,

and the log sampler reports the Hadoop log information

(including Hadoop metrics and job history files)

whenever there is new log information.

Since the tracker (especially the task execution sampler)

needs to instrument the Hadoop tasks running on each

node, it is the major source of performance overheads in

HiTune. We have carefully designed and implemented

the tracker (e.g., the task execution sampler caches the

stack traces in memory and batches the write-out to the

aggregation engine), so that it has very low (less than

2% according to our measurement) performance

impacts on Hadoop applications.

5.2 Implementation of Aggregation Engine

To ensure its scalability, the aggregation engine is

implemented as a distributed data collection system,

which can collect the sampling information from

potentially thousands of nodes in the Hadoop cluster. In

the current implementation, we have chosen to use

Chukwa (a distributed log collection framework) as our

aggregation engine. Every sampler in HiTune directly

sends its sampling records to the Chukwa agent running

on the local node, which in turn sends data to the

Chukwa collectors over the network; the collector is

responsible for storing the sampling data in a (separate)

monitoring Hadoop/HDFS cluster.

5.3 Implementation of Analysis Engine

The sampling data for a Hadoop job can be potentially

very large in size (e.g., about 100GB for TeraSort

[16][17] in our cluster). We address the scalability

challenge by first storing the sampling data in HDFS (as

described in section 5.2), and then running the analysis

engine as a Hadoop application on the monitoring

Hadoop cluster in an offline fashion.

Based on the Target field (i.e., the node name, the task

name and the Java thread ID) of every task execution

sampling record, the analysis engine first constructs a

sampling trace for each thread (i.e., the sequence of all

task execution sampling records belonging to that

thread, ordered by the record timestamps) in the

Hadoop job.

The program location (used in the dataflow

specification) can therefore be defined as a range of

consecutive sampling records in one thread trace (or, in

the case of thread group, multiple ranges each in a

different thread). Each record range is identified by the

starting and ending records, which are specified using

their execution positions (i.e., partial stack traces). For

instance, all the records between the first appearance

and the last appearance of MapTask.run (or simply the

MapTask.run method) constitute one instance of the

map vertex. See Figure 8 for the detailed dataflow

specification of our Hadoop cluster.

Based on the Target and Timestamp fields of the two

boundary records of corresponding program locations,

the analysis engine then determines which machine each

instance of a vertex runs on, when it starts and when it

ends. Finally, it associates all the system and log file

sampling records to each instance of the dataflow graph

vertex (i.e., the processing stage), again using the

Target and Timestamp information of the records.

With the algorithm and dataflow specification described

above, the analysis engine can easily reconstruct the

dataflow execution for the Hadoop job and associates

different sampling records with the dataflow graph. In

addition, the performance analysis algorithm is itself

implemented as a Hadoop application, which processes

the sampling records for each JVM simultaneously.

Consequently, we can generate various analysis reports

that provide valuable insights into the Hadoop runtime

behaviors (presented in the same dataflow model used

in developing and running the Hadoop job). For

instance, a timeline based execution chart for all task

instances, similar to the pipeline space-time diagram

[18], can be generated so that users can get a complete

picture about the dataflow-based execution process of

the Hadoop job. It is also possible to generate the

hotspot breakdown (e.g., disk I/O vs. network transfer

vs. computations) for each vertex in the dataflow, so

that users can identify the possible bottlenecks in the

Hadoop cluster. We show some analysis reports and

how they are used to help our Hadoop performance

analysis and tuning in section 7.

6. Evaluations

In this section, we experimentally evaluate the runtime

overheads and scalability of HiTune, using three

benchmarks (namely, Sort, WordCount and Nutch

indexing) in the HiBench Hadoop benchmark suite [17],

as shown in Table 1. The Hadoop cluster used in our

experiment consists of one master (running JobTracker

and NameNode) and up to 20 slaves (running

TaskTracker and DataNode); the detailed server

configurations are shown in Table 2. Every server has

two GbE NICs, each of which is connected to a

different gigabit Ethernet switch, forming two different

networks; one network is used for the Hadoop jobs, and

the other is used for administration and monitoring tasks

(e.g., the Chukwa aggregation engine in HiTune).

Table 1. Hadoop benchmarks
Benchmark Input Data

Sort 60GB generated by RandomWriter example.

WordCount 60GB generated by RandomTextWriter example

Nutch

indexing

19GB data generated by crawling an in-house

Wikipedia mirror

Table 2. Server configurations
Processor Dual-socket quad-core Intel Xeon processor

Disk 4 SATA 7200RPM HDDs

Memory 24 GB ECC DRAM

Network 2 Gigabit Ethernet NICs

OS Redhat Enterprise Linux 5.4

We evaluate the runtime overheads of HiTune by

measuring the Hadoop performance (speed and

throughput) as well as the system resource (e.g., CPU

and memory) utilizations of the Hadoop cluster. The

speed is measured using the job running time, and the

throughput is defined as the number of tasks completed

per minute when the Hadoop cluster is at full utilization

(by continuously submitting multiple jobs to the cluster).

In addition, we evaluate the scalability of HiTune by

analyzing that, when there are more nodes in the

Hadoop cluster, whether the runtime overheads increase

and whether it becomes more complex for HiTune to

conduct the dataflow-based performance analysis.

6.1 Runtime Overheads

As mentioned in section 5.1, the tracker (especially the

task execution sampler) is the major source of runtime

overheads in HiTune. This is because the task execution

sampler needs to instrument the Hadoop tasks running

on each node, while the aggregation and analysis of

sampling data are performed on a separate monitoring

cluster in an offline fashion.

We first compare the instrumented Hadoop

performance (measured when the tracker is running)

and the baseline performance (measured when the

tracker is completely turned off). In our experiment,

when the tracker is running, the task execution sampler

dumps the Java thread stack trace every 20 milliseconds,

the system sampler reports the system statistics every 5

seconds, and the Hadoop cluster is configured to output

its metrics to the log file every 10 seconds. Figures 9

and 10 show the ratio of the instrumented performance

over the baseline performance for job running time

(lower is better) and throughput (higher is better)

respectively. It is clear that the overhead of running the

tracker is very low in terms of performance – the

instrumented job running time is longer than the

baseline by less than 2%, and the instrumented

throughput is lower than the baseline by less than 2%.

In addition, we also compare the instrumented system

resource utilizations (measured when the tracker is

running) and the baseline utilizations (measured when

only the system sampler is running, which is needed to

report the system resource utilizations periodically).

Since the sampling records are aggregated using a

separate network, we only present the CPU and memory

utilization results of the Hadoop cluster in this paper.

Figures 11 and 12 show the ratio of the instrumented

CPU and memory utilizations over the baseline

utilizations respectively. It is clear that the overhead of

running the tracker is also very low in terms of resource

utilizations – either the instrumented CPU or memory

utilization is higher than the baseline by less than 2%.

101% 102% 101%

101% 100% 101%

101% 100% 100%

0%

20%

40%

60%

80%

100%

120%

Sort WordCount Nutch indexingR
a

ti
o

 o
f

C
o

m
p

le
ti

o
n

 T
im

e

Workloads

5-slave cluster 10-slave cluster 20-slave cluster

Figure 9. Ratio of instrumented job running time over

baseline job running time

98% 100% 98%

98% 100% 98%

99% 98% 100%

0%

20%

40%

60%

80%

100%

120%

Sort WordCount Nutch indexing

R
a

ti
o

 o
f

 T
h

ro
u

g
h

p
u

t

Workloads

5-slave cluster 10-slave cluster 20-slave cluster

Figure 10. Ratio of instrumented cluster throughput

over baseline cluster throughput

100% 102% 100%

102% 101% 100%

100% 100% 100%

0%

20%

40%

60%

80%

100%

120%

Sort WordCount Nutch indexing

R
a

ti
o

 o
f

C
P

U
 U

ti
li
z
a

ti
o

n

Workloads

5-slave cluster 10-slave cluster 20-slave cluster

Figure 11. Ratio of instrumented cluster CPU

utilization over baseline cluster CPU utilization

102% 100% 102%

102% 100% 101%

102% 100% 100%

0%

20%

40%

60%

80%

100%

120%

Sort WordCount Nutch indexingR
a

ti
o

 o
f

 M
e

m
o

ry
 U

ti
li
z
a

ti
o

n

Workloads

5-slave cluster 10-slave cluster 20-slave cluster

Figure 12. Ratio of instrumented cluster memory

utilization over baseline cluster memory utilization

In summary, HiTune is a very lightweight performance

analyzer for Hadoop, with very low (less than 2%)

runtime overheads in terms of speed, throughput and

system resource utilizations. In addition, HiTune scales

very well in terms of the runtime overheads, because it

instruments each node in the cluster independently and

consequently the runtime overheads remain the same

even when there are more nodes in the cluster (as

confirmed by the experimental results).

6.2 Complexity of Performance Analysis

Since the analysis engine needs to re-construct the

dataflow execution of a Hadoop job and associate the

sampling records to each vertex instance in the dataflow,

the complexity of analysis can be evaluated by

comparing the sizes of sampling data and the numbers

of vertex instances between different sized clusters.

Figure 13 shows the sampling data sizes for the 5-, 10-

and 20-slave clusters. It is clear that the sampling data

sizes remain about the same (or increase very slowly)

for different sized clusters (e.g., only less than 18%

increase in the sample data size even when the cluster

size is increased by 4x). Intuitively, since HiTune

samples each instance of the processing stages at fixed

time intervals, the sampling data size is proportional to

the sum of the running time of all vertex instances. As

long as the underlying Hadoop framework scales well

with the cluster sizes, the sum of the vertex instance

running time will remain about the same (or increase

very slowly), and so does the sampling data size. In

practice, even with very large (1000s of nodes) clusters,

a MapReduce job usually runs on about 100s of worker

machines [19], and the Hadoop framework scales

reasonably well with that number (100s) of machines.

6.1 3.2 3.4

6.8

3.2
3.6

7.2

3.5 3.8

0

1

2

3

4

5

6

7

8

Sort WordCount Nutch indexing

S
a

m
p

li
n

g
 D

a
ta

 S
iz

e
(G

)

Workloads

5-slave cluster 10-slave cluster 20-slave cluster

Figure 13. Comparison of sampling data sizes

In addition, assume M and R are the total numbers of

the map and reduce tasks of a Hadoop job respectively.

Since in the Hadoop dataflow model (as shown in

Figure 8) each map task contains two stages and each

reduce task contains four stages, the total number of

vertex instances can be computed as 2*M+4*R. In

practice, the number of map tasks is about 26x of that of

reduce tasks in average for each MapReduce job [20],

and therefore the vertex instance count is about 2.15*M.

Since the number of map tasks (M) of a Hadoop job is

typically determined by its input data size (e.g., by the

number of HDFS file blocks), the number of vertex

instances will also remain about the same for different

sized clusters in practice.

In summary, the complexity for HiTune to conduct the

dataflow-based performance analysis will remain about

the same even when there are more nodes in the cluster

(or, more precisely, the dataflow-based performance

analysis in HiTune scales as well as Hadoop does with

the cluster sizes), because the sampling data sizes and

the vertex instance counts will remain about the same

even when there are more nodes in the cluster. In

addition, we have implemented the analysis engine as a

Hadoop application, so that the dataflow-based

performance analysis can be parallelized using another

monitoring Hadoop cluster. For instance, to process the

100GB sampling data generated when running TeraSort

in our cluster, it takes about 16 minutes on a single-

slave monitoring cluster, and about 5 minutes on a 4-

slave monitoring cluster.

7. Experience

HiTune has been used intensively inside Intel for

Hadoop performance analysis and tuning (e.g., see [17]).

In this section, we share our experience on how we use

HiTune to efficiently conduct performance analysis and

tuning for Hadoop, demonstrating the benefits of

dataflow-based analysis and the limitations of existing

approaches (e.g., system statistics, Hadoop logs and

metrics, and traditional profiling).

7.1 Tuning Hadoop Framework

One performance issue we encountered is extremely

low system utilizations when sorting many small files

(3200 500KB-sized files) using Hadoop 0.20.1 – system

statistics collected by the cluster monitoring tools (e.g.,

Ganglia [21]) show that the CPU, disk I/O and network

bandwidth utilizations are all below 5%. That is, there

are no obvious bottlenecks or hotspots in our cluster;

consequently, traditional tools (e.g., system monitors

and program profilers) fail to reveal the root cause.

Figure 14. Dataflow execution for sorting many small

files with Hadoop 0.20.1

To address this performance issue, we used HiTune to

reconstruct the dataflow execution process of this

Hadoop job, as illustrated in Figure 14. The x-axis

represents the elapse of wall clock time, and each

horizontal line in the chart represents a map or reduce

task. Within each line, bootstrap represents the period

before the task is launched, idle represents the period

after the task is complete, map represents the period

when the map task is running, and shuffle, sort and

reduce represent the periods when (the instances of) the

corresponding stages are running respectively.

As is obvious in the dataflow execution, there are few

parallelisms between the Map tasks, or between the

Map tasks and Reduce tasks in this job. Clearly, the task

scheduler in Hadoop 0.20.1 (Fair Scheduler [22] is

used in our cluster) fails to launch all the tasks as soon

as possible in this case. Once the problem is isolated,

we quickly identified the root cause – by default, the

Fair Scheduler in Hadoop 0.20.1 only assigns one task

to a slave at each heartbeat (i.e., the periodical keep-

alive message between the master and slaves), and it

schedules map tasks first whenever possible; in our job,

each map task processes a small file and completes very

fast (faster than the heartbeat interval), and

consequently each slave runs the map tasks sequentially

and the reduce tasks are scheduled after all the map

tasks are done.

To fix this performance issue, we upgraded the cluster

to Fair Scheduler 2.0 [23][24], which by default

schedules multiple tasks (including reduce tasks) in

each heartbeat; consequently the job runs about 6x

faster (as shown in Figure 15) and the cluster utilization

is greatly improved.

Figure 15. Dataflow execution for sorting many small

files with Fair Scheduler 2.0

7.2 Analyzing Application Hotspots

In the previous section, we demonstrate that the high

level dataflow execution process of a Hadoop job helps

users to understand the dynamic task scheduling and

assignment of the Hadoop framework. In this section,

we show that the dataflow execution process helps users

to identify the data shuffle gaps between map and

reduce, and that relating the low level performance

activities to the high level dataflow model allows users

to conduct fine-grained, dataflow-based hotspot

breakdown (so as to understand the hotspots of the

massively distributed applications).

Figure 16 shows the dataflow execution, as well as the

timeline based CPU, disk and network bandwidth

utilizations of TeraSort [16][17] (sorting 10 billion 100-

byte records). It has high CPU utilizations during the

map tasks, because the map output data are compressed

(using the default codec in Hadoop) to reduce the disk

and network I/O. (Compressing the input or output of

TeraSort is not allowed in the benchmark specs).

Figure 16. TeraSort (using default compression codec)

However, the dataflow execution process of TeraSort

shows that there is a large gap (about 15% of the total

job running time) between the end of map tasks and the

end of shuffle phases. According to the communication

patterns specified in the Hadoop dataflow model (see

Figure 2 and Figure 8), shuffle phases need to fetch the

output from all the map tasks in the copier stages, and

ideally should complete as soon as all the map tasks

complete. Unfortunately, traditional tools or Hadoop

logs fail to reveal the root cause of the large gap,

because during that period, none of the CPU, disk I/O

and network bandwidth are bottlenecked, the “Shuffle

Fetchers Busy Percent” metric reported by the Hadoop

framework is always 100%, while increasing the

number of copier threads does not improve the

utilization or performance.

To address this issue, we used HiTune to conduct

hotspot breakdown of the shuffle phases, which is

possible because HiTune has associated all the low

level sampling records with the high level dataflow

execution of the Hadoop job. The dataflow-based

hotspot breakdown (see Figure 17) shows that, in the

shuffle stages, the copier threads are actually idle 80%

of the time, waiting (in the ShuffleRamManager.

reserve method) for the occupied memory buffers to be

freed by the memory merge threads. (The idle vs. busy

breakdown and the method hotspot are determined

using the Java thread state and stack trace in the task

execution sampling records respectively). On the other

hand, most of the busy time of the memory merge

thread is due to the compression, which is the root cause

of the large gap between map and shuffle. To fix this

issue and reduce the compression hotspots, we changed

the compression codec to LZO [25], which improves the

TeraSort performance by more than 2x and completely

eliminates the gap (see Figure 18).

Figure 17. Copier and Memory Merge threads

breakdown (using default compression codec)

Figure 18. TeraSort (using LZO compression)

7.3 Diagnosing Hardware Problems

By examining Figure 18 in more detail, we also found

that the reduce stage running time is significantly

skewed among different reduce tasks – a small number

of stages are much slower than the others, as shown in

Figure 19.

Figure 19. Reduce tasks of TeraSort (using LZO

compression)

gap

Based on the association of the low level sampling

records and the high level dataflow model, we use

HiTune to generate the normalized average running

time and the idle vs. busy breakdown of the reduce

stages (grouped by the Tasktrackers that the stages run

on) in Figure 20. It is clear that reduce stages running

on the 3
rd

 and 7
th

 TaskTrackers are much slower (about

20% and 14% slower than the average respectively). In

addition, while all the reduce stages have about the

same busy time, the reduce stages running on these two

TaskTrackers have more idle time, waiting in the

DFSOutputStream.writeChunk method (i.e., writing

data to HDFS). Since the data replication factor in

TeraSort is set to 1 (as required by the benchmark

specs), the HDFS write operations in the reduce stage

only writes to the local disks. By examining the average

write bandwidth of the disks on these two TaskTrackers,

we finally identified the root cause of this problem –

there is one disk on each of these two nodes that is

much slower than other disks in the cluster (about 44%

and 30% slower than the average respectively), which is

later confirmed to have bad sectors through a very

expensive fsck process.

0%

20%

40%

60%

80%

100%

120%

140%

N
o

rm
a

li
ze

d
 r

e
d

u
ce

 s
ta

g
e

ti
m

e

TaskTrackers

Busy Idle Average Running Time

1.2
1.14

Figure 20. Normalized average running time and busy

vs. idle breakdown of reduce stages

7.4 Extending HiTune to Other Systems

Since the initial release of HiTune inside Intel, it has

been extended by the users in different ways to meet

their requirements. For instance, new samplers are

added so that processor microarchitecture events and

power state behaviors of Hadoop jobs can be analyzed

using the dataflow model.

In addition, HiTune has also been applied to Hive (an

open source data warehouse built on top of Hadoop), by

extending the original Hadoop dataflow model to

include additional phases and stages, as illustrated in

Figure 21. The map stage is divided into 5 smaller

stages – namely, Stage Init, Hive Init, Hive Active, Hive

Close and Stage close; in addition, the reduce stage is

divided into 4 smaller stages – namely, Hive Iinit, Hive

Active, Hive Close and Stage Close. This is

accomplished by providing to the analysis engine a new

specification file that describes the dataflow model and

resource mappings in Hive.

Hive

Init

Hive

Active

Hive

Close

Hive Processing Period

Active

Hive data flow stage timeline

map stage timeline

Stage

Init

Stage

Close

Hive

Init

Hive

Active

Hive

Close

Stage

Init

Hive

Init

Hive

Active

Hive

Close

Hive Processing Period

Active

Hive data flow stage timeline

map stage timeline

Stage

Init

Stage

Close

Hive

Init

Hive

Active

Hive

Close

Stage

Init

Hive Processing Period

Active

Hive data flow stage timeline

reduce stage timeline

Stage

Close

Hive

Init

Hive

Active

Hive

Close

Hive Processing Period

Active

Hive data flow stage timeline

reduce stage timeline

Stage

Close

Hive

Init

Hive

Active

Hive

Close

Figure 21. Extended dataflow model for Hive

Time line

M
a

p
/R

e
d

u
ce

 T
as

k
s

Hive aggregation query

bootstrap

Stage Init

shuffle

sort

HIVE INIT

HIVE ACTIVE

HIVE CLOSE

Stage Close

idle

Figure 22. Dataflow execution of the Hive query

Stage Init

9%

Hive

Init

4%

Hive

Close

0%

Stage Close

19% Hive

Input

15%

Hive

Operations

32%

Hive Output

21%

Hive Active

68%

Figure 23. Map stage breakdown

Hive Init

2.1%

Hive

Close

0.2%

Stage Close

20.2%

Hive Input

42.4%

Hive

Operations

32.0%

Hive Output

3.2%

Hive Active

77.6%

Figure 24. Reduce stage breakdown

Figure 22 shows the dataflow execution process for the

aggregation query in Hive performance benchmarks

[26][9]. In addition, Figures 23 and 24 show the

dataflow-based breakdown of the map/reduce stages for

the aggregation query (both the map and reduce Hive

active stages are further broken into 3 portions: Hive

Input, Hive Operation and Hive Output based on the

Java methods). As shown in Figures 23 and 24, the

query spends only about 32% of its time performing the

Hive Operations; on the other hand, it spends about

68% of its time on the data input/output, as well as the

initialization and cleanup of the Hadoop/Hive

frameworks. Therefore, to optimize this Hive query, it

is more critical to reduce the size of intermediate results,

to improve the efficiency of data input/output, and to

reduce the overheads of the Hadoop/Hive frameworks.

8. Related Work

There are several distributed system tracing tools (e.g.,

Magpie [27], X-Trace [28] and Dapper [29]), which

associates and propagates the tracing metadata as the

request passes through the system. With this type of

path information, the tracing tools can easily construct

an event graph capturing the causality of events across

the system, which can be then queried for various

analyses [30]. Unfortunately, these tools would require

changes not only to source codes but also to message

schemas, and are usually restricted to a small portion of

the system in practice (e.g., Dapper only instruments the

threading, callback and RPC libraries in Google [29]).

In contrast, our approach uses binary instrumentations

to sample the tasks in a distributed and independent

fashion at each node, and reconstructs the dataflow

execution process of the application based on a priori

knowledge of Big Data Cloud. Consequently, it requires

no modifications to the system, and therefore can be

applied more extensively to obtain richer information

(e.g., the hottest function) than these tracing tools.

Our distributed instrumentations are similar to Google-

Wide Profiling (GWP) [31], which samples across

machines in multiple data centers for production

applications. In addition, the current Hadoop framework

can profile specific map/reduce tasks using traditional

Java profilers (e.g., HPROF [32]), which however have

very high overheads and are usually applied to a small

(2 or 3) number of tasks. More importantly, both GWP

and the existing profiling support in Hadoop focus on

providing traditional performance analysis to the

distributed systems (e.g., by allowing the users to

directly query the low level sampling data). In contrast,

our key technical challenge is to reconstruct the high

level dataflow execution of the application based on the

low level sampling data, so that users can work on the

same dataflow model used in developing and running

their Big Data applications.

In the industry, traditional cluster monitoring tools (e.g.,

Ganglia [21], Nagios [33] and Cacti [34]) have been

widely used to collect system statistics (e.g., CPU load)

from all the machines in the cluster; in addition, several

large-scale log collection systems (e.g., Chukwa [12],

Scribe [13] and Flume [14]) have been recently

developed to aggregate log data from a large number of

servers. All of these tools focus on providing a

distributed framework to collect statistics and logs, and

are orthogonal to our work (e.g., we have actually used

Chukwa as the aggregation engine in the current

HiTune implementation).

Existing diagnostic tools for Hadoop and Dryad (e.g.,

Vaidya [35], Kahuna [36] and Artemis [37]) focus on

mining the system logs to detect performance problems.

For instance, it is possible to construct the task

execution chart (as shown in section 7.1) using the

Hadoop job history files. Compared to these tools, our

approach (based on distributed instrumentation and

dataflow-driven performance analysis) has many

advantages. First, it can provide much more insights,

such as dataflow-based hotspot breakdown (see sections

7.2 and 7.3), into the cloud runtime behaviors. More

importantly, performance problems of massively

distributed systems are very complex, and are often due

to issues that the developers are completely unaware of

(and therefore are not exposed by the existing codes or

logs). For instance, in section 7.2, the Hadoop

framework shows that the shuffle fetchers are always

busy, while detailed breakdown provided by HiTune

reveals that copiers are actually idle most of the time.

Finally, our approach is much more general, and

consequently can be easily extended to support other

systems such as Hive (see section 7.4).

9. Conclusions

In this paper, we propose a general approach of

performance analysis for Big Data Cloud, based on

distributed instrumentations and dataflow-driven

performance analysis. Based on this approach, we have

implemented HiTune (a Hadoop performance analyzer),

which provide valuable insights into the Hadoop

runtime behaviors with every low overhead, no source

code changes, very good scalability and extensibility.

We also report our experience on how to use HiTune to

efficiently conduct performance analysis and tuning for

Hadoop, demonstrating the benefits of dataflow-based

analysis and the limitations of existing approaches.

Reference

[1] D. Borthakur, N. Jain, J. S. Sarma, R. Murthy, H.

Liu. “Data warehousing and analytics infrastructure

at facebook”. The 36th ACM SIGMOD Inter-

national Conference on Management of Data, 2010.

[2] J. Dean, S. Ghemawat. “MapReduce: Simplified

Data Processing on Large Clusters”. The 6th

Symposium on Operating Systems Design and

Implementation, 2004.

[3] Hadoop. http://hadoop.apache.org/

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly.

“Dryad: Distributed Data-Parallel Programs from

Sequential Building Blocks”. The 2nd European

Conference on Computer Systems, 2007.

[5] C. Olston, B. Reed, U. Srivastava, R. Kumar, A.

Tomkins. “Pig latin: a not-so-foreign language for

data processing”. The 34th ACM SIGMOD inter-

national conference on Management of data, 2008.

[6] A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N.

Jain, P. Chakka, S. Anthony, H. Liu, N. Zhang.

“Hive - A Petabyte Scale Data Warehousing Using

Hadoop”. The 26th IEEE International Conference

on Data Engineering, 2010.

[7] Dryad. http://research.microsoft.com/en-us/projects

/Dryad/

[8] “Hadoop and HBase at RIPE NCC”. http://www.

cloudera.com/blog/2010/11/hadoop-and-hbase-at-

ripe-ncc/

[9] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.

DeWitt, S. Madden, M. Stonebraker. “A

comparison of approaches to large-scale data

analysis”. The 35th SIGMOD international

conference on Management of data, 2009.

[10] S. L. Graham, P. B. Kessler, M. K. Mckusick.

“Gprof: A call graph execution profiler”. The 1982

ACM SIGPLAN Symposium on Compiler

Construction, 1982.

[11] Intel VTune Performance Analyzer. http://software.

intel.com/en-us/intel-vtune/

[12] A. Rabkin, R. H. Katz. “Chukwa: A system for

reliable large-scale log collection”, Technical

Report UCB/EECS-2010-25, UC Berkeley, 2010.

[13] Scribe. http://github.com/facebook/scribe

[14] Flume. https://github.com/cloudera/flume

[15] Java Instrumentation. http://download.oracle.com/

javase/6/docs/api/java/lang/instrument/package-

summary.html

[16] Sort benchmark. http://sortbenchmark.org/

[17] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang. “The

HiBench Benchmark suite: Characterization of the

MapReduce-Based Data Analysis”. IEEE 26th

International Conference on Data Engineering

Workshops, 2010.

[18] J. L. Hennessy, D. A. Patterson. “Computer

Architecture: A Quantitative Approach”. Morgan

Kaufmann, 4
th

 edition, 2006.

[19] Jeff Dean. “Designs, Lessons and Advice from

Building Large Distributed Systems”. The 3rd

ACM SIGOPS International Workshop on Large

Scale Distributed Systems and Middleware, 2009.

[20] Jeffrey Dean. “Experiences with MapReduce, an

abstraction for large-scale computation”. The 15th

International Conference on Parallel Architectures

and Compilation Techniques, 2006.

[21] Ganglia. http://ganglia.sourceforge.net/

[22] A fair sharing job scheduler. https://issues.apache.

org/jira/browse/HADOOP-3746

[23] M. Zaharia, D. Borthakur, J. S. Sarma, K.

Elmeleegy, S. Shenker, I. Stoica. “Job Scheduling

for Multi-User MapReduce Clusters”. Technical

Report UCB/EECS-2009-55, UC Berkeley, 2009.

[24] Hadoop Fair Scheduler Design Document.

https://svn.apache.org/repos/asf/hadoop/mapreduce

/trunk/src/contrib/fairscheduler/designdoc/fair_sche

duler_design_doc.pdf

[25] Hadoop LZO patch. http://github.com/kevinweil/

hadoop-lzo

[26] Hive performance benchmark. https://issues.apache.

org/jira/browse/HIVE-396

[27] P. Barham, R. Isaacs, R. Mortier, D. Narayanan.

“Magpie: online modelling and performance-aware

systems”. The 9th conference on Hot Topics in

Operating Systems, 2003.

[28] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, I.

Stoica. “X-trace: A pervasive network tracing

framework”. The 4th USENIX Symposium on Net-

worked Systems Design & Implementation, 2007.

[29] B. H. Sigelman, L. A. Barroso, M. Burrows, P.

Stephenson, M. Plakal, D. Beaver, S. Jaspan, C.

Shanbhag. “Dapper, a Large-Scale Distributed

Systems Tracing Infrastructure”. Google Research,

2010.

[30] B. Chun, K. Chen, G. Lee, R. Katz, S. Shenker.

“D3: Declarative Distributed Debugging”.

Technical Report UCB/EECS-2008-27, UC

Berkeley, 208.

[31] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, R.

Hundt. “Google-Wide Profiling: A Continuous

Profiling Infrastructure for Data Centers”. IEEE

Micro (2010), pp. 65-79.

[32] “HPROF: a Heap/CPU Profiling Tool in J2SE 5.0”.

http://java.sun.com/developer/technicalArticles/Pro

gramming/HPROF.html

[33] Nagios. http://www.nagios.org/

[34] Cacti. http://www.cacti.net/

[35] V. Bhat, S. Gogate, M. Bhandarkar. “Hadoop

Vaidya”. Hadoop World 2009.

[36] J. Tan, X. Pan, S. Kavulya, R. Gandhi, P.

Narasimhan. “Kahuna: Problem Diagnosis for

MapReduce-Based Cloud Computing

Environments”. IEEE/IFIP Network Operations

and Management Symposium (NOMS), 2010.

[37] G. Cretu, M. Budiu, M. Goldszmidt . “Hunting for

problems with Artemis”. First USENIX conference

on Analysis of system logs, 2008.

