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Abstract

A key measure for the success of a Content Delivery Net-
work is controlling cost of the infrastructure required to
serve content to its end users. In this paper, we take a
closer look at how Yahoo! efficiently serves millions of
videos from its video library. A significant portion of this
video library consists of a large number of relatively un-
popular user-generated content and a small set of popular
videos that changes over time.

Yahoo!’s initial architecture to handle the distribution
of videos to Internet clients used shared storage to hold
the videos and a hardware load balancer to handle fail-
ures and balance the load across the front-end server
that did the actual transfers to the clients. The front-end
servers used both their memory and hard drives as caches
for the content they served. We found that this simple ar-
chitecture did not use the front-end server caches effec-
tively.

We were able to improve our front-end caching while
still being able to tolerate faults, gracefully handle the
addition and removal of servers, and take advantage
of geographic locality when serving content. We de-
scribe our solution, called SPOCA (Stateless, Propor-
tional, Optimally-Consistent Addressing), which reduce
disk cache misses from 5% to less than 1%, and increase
memory cache hits from 45% to 80% and thereby result-
ing in the overall cache hits from 95% to 99.6%. Unlike
other consistent addressing mechanisms, SPOCA facili-
tates nearly-optimal load balancing.

1 Introduction

Serving videos is an I/O intensive task. Videos are larger
than other media, such as web pages and photos, which
not only puts a strain on our network infrastructure, but
also requires lots of storage.
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Our clients access videos using web browsers. They
connect to front-end servers which serve the video con-
tent. The front-end servers cache content, but are not
the permanent content repository. Videos are stored in a
storage farm that is made up of network attached storage
accessible by all front-end servers.

To further complicate things, the video content is
spread around the world. So, when a client requests con-
tent that is non-local, we must decide whether to have the
client pull from the remote cluster that has the content, or
copy the content from the remote cluster and serve it lo-
cally.

Video delivery is fastest and causes the least amount
of load on the rest of the infrastructure if the content
is cached in the memory of a front-end server. If the
content must be accessed from the disk of the front-end
server, the load on the front-end server increases slightly.
It causes significantly more load and slower delivery if
the content must be retrieved from the storage farm. In-
creased load on the serving infrastructure translates into
higher cost to upgrade networking components and to
add more servers and disk drives in the storage farm to
increase the number of operations per second that it can
handle. Thus, good caching at the front-end servers is
important to latency, throughput, and the bottom line.

The Yahoo! Video Platform has a library of over
20,000,000 video assets. From this library, end users
make about 30,000,000 requests per day for over 800,000
unique videos, which creates a low ratio of total requests
to unique requests. Also, because videos are large, a typ-
ical front-end server can hold only 500 unique videos in
memory and 100,000 unique videos on disk. The low ra-
tio of total/unique requests combined with the large size
of video files make it difficult to achieve a high percent-
age of cache hits.

A straightforward architecture, shown in Figure 1,
uses a VIP (Virtual IP) load balancer which distributes
requests in a round-robin fashion among a cluster of
front-end servers. The VIP exposes an IP address that
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Figure 1: A straightforward content serving architecture
using a hardware load balancer VIP (Virtual IP) with
front-end server that are connected to a shared storage
farm.

the clients connect to. The VIP routes connections to
front-end servers to balance load and mask failures of
front-end servers. Front-end servers manage their cache
by promoting every requested item while demoting the
least recently used item.

This was our initial content serving architecture that
we used in production. Unfortunately, this straightfor-
ward approach results in more requests to the storage
farm, due to cache misses at the front-end servers, than
the farm can handle. Our storage farm has copious space
but limited bandwidth. The front-end server disks are a
secondary bottleneck because memory cache misses ex-
haust the disk throughput before the CPU of the front-
end server can be fully utilized.

In a cluster of front-end servers behind a VIP, each
piece of popular content will end up cached on multi-
ple servers. For example, in Figure 1 vidl is a popular
video that ends up cached on all the front-end servers.
vid2 and vid3 may have only been requested twice
each, but that resulted in each video being cached on two
nodes.

This is grossly inefficient compared to caching each
piece of content on only one server and routing all re-
quests for that content to the server where it is cached.
If the cluster’s collective cache stores as few copies of
each video as possible, then it will be able to store as
many unique videos as possible, which in turn will drive
down cache misses as low as possible. Eliminating re-
dundant caching of content also reduces the load on the
storage farm. An intelligent request-routing policy can
produce far more caching efficiency than even a perfect
cache promotion policy that must labor under random re-
quest routing.

Maximizing caching efficiency via request routing in-
troduces practical challenges. It is difficult to keep a re-
quest router’s knowledge in synch with the actual cache
of each front-end server. Furthermore, even if a re-
quest router has a real-time database of cache contents, a
database lookup on every user request is a non-trivial la-
tency. Also, most deployments must have more than one
request router, which raises the possibility of two dif-
ferent routers independently making a different decision
of where to place new content that is not yet in cache, or
where to re-locate content when a front-end server leaves
or enters the cluster.

The cache promotion algorithm is a natural place to
look for improvement. A better promotion policy offers
us significantly more memory cache hits and is therefore
a step toward relieving the disk throughput bottleneck.
The accesses to the storage farm, however, are reduced
only marginally by a good promotion policy, because the
disk cache miss percentage is low to start with. In some
circumstances, delaying a page-in from permanent stor-
age to the disk cache until we are confident that a piece of
content is promotion-worthy actually results in more disk
cache misses than automatic promotion does. Therefore,
another solution is necessary.

Of course the above discussion does not consider the
problems arising from the geographic distribution of the
content. Not all content is available at all locations. The
cluster of servers closest to the user, nearest locale, may
not be the cluster storing the content, home locale. So
when we put together the caching discussion and the ge-
olocality, we end up with the following possible user ex-
periences:

1. nearest locale and cached = excellent experience

2. nearest locale and not cached = average experience

3. home locale and cached = average experience

4. home locale and not cached = below average expe-
rience

To get excellent user experience for the most users we
need to be able to cache popular remote content locally.

In this paper we describe SPOCA, a system for con-
sistent request routing, and Zebra, a system for routing
requests geographically. Both systems have been in pro-
duction for a few years now at Yahoo! The contributions
of this work are:

e We describe a system that is actually used in pro-

duction in a global scenario for web-scale load.

e We show the real world improvements we saw over
the simple off-the-shelf solution in terms of perfor-
mance, management consolidation, and deployment
flexibility.

o SPOCA implements load balancing, fault tolerance,
popular content handling, and efficient cache uti-
lization with a single simple mechanism.

e Zebra handles geographic locality in a way that fits



nicely with the mechanism used locally in the data
centers.

e We are able to implement all the above with only
soft state.

2 Requirements

Our content distribution network is faced with different
traffic profiles for its various delivery modes. To handle
this, profiles are divided by types of content into pools.
This allowed us to adjust the provisioning and policies of
the pools to accommodate the traffic profiles. The three
main content pools are: Download pools (DLOD), Flash
Media Pools(FLOD), Windows Media Pools(WMOD).
FLOD is made up of a relatively small library of files and
a high average popularity; for DLOD the traffic consists
mostly of a large number of unpopular files; and WMOD
streaming must deal with both a huge library and some
very hot streams. A high level goal for the platform was
to merge these pools and be able to manage the diverse
requirements of the different traffic profiles in an adap-
tive way.

A naive approach to partitioning a pool among a group
of front-end servers would be to maintain a catalog that
associates each content file with a particular front-end
server. The catalog approach is, however, impractical be-
cause the set of servers in a location is constantly chang-
ing. It would be too time-consuming to re-index the en-
tire content library every time a new front-end server be-
came available, or a current server became unavailable,
or a former server re-entered the pool after having been
temporarily unavailable. Therefore Yahoo! uses a state-
less addressing approach.

For stateless addressing, the inputs are a filename and
a list of currently available servers; the output is a server
from the list. This eliminates the need to maintain and
communicate a catalog. The tradeoff is that Request
Router must recalculate the destination server on every
request, but fortunately the cost is only microseconds
in practice. The same input always produces the same
output, so two different Request Router servers, without
communicating to each other, will address the same file
to the same front-end server within a pool.

We have additional stringent requirements for our ad-
dressing algorithm. First, it must partition the set of
filenames proportional to different weights for different
front-end servers in heterogeneous pools. For example,
a newer server might have twice the capacity of an older
server, and therefore should serve twice as large a portion
of the content library.

The proportionality requirement rules out the use of
a distance-based consistent hashing algorithm, although
such algorithms are consistent and stateless. Such an al-
gorithm assigns an address to each front-end server, and
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Figure 2: Distance-based Consistent Hashing
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assigns a file to the server with the address closest to the
hash of the filename, according to some distance func-
tion. To see that distance-based consistent hashing does
not respect server weights, suppose to the contrary that
some configuration of front-end server addresses did re-
spect server weights. Suppose that some server then be-
came unavailable. All of the content for which the un-
available server had been responsible would fall to its
nearest neighbors by the distance function. Servers far-
ther away by the distance function would pick up none of
the load. Therefore, the content library would no longer
be partitioned proportional to server weights (see Figure
2).

In some circumstances it might be reasonable to per-
mit the load of a missing server to be redistributed to
its nearest neighbors only. For Yahoo!, however, one
reason for a server to be missing is that the server was
overloaded. If its load then falls entirely on a few neigh-
bors by distance, they may also become overloaded and
fail as well, creating a domino effect that brings down
the entire pool. Therefore it is critical that whenever a
server leaves the pool, its load is distributed among all re-
maining servers, proportional to their respective weights.
(Figure 3 show an acceptable redistribution.)

Our second requirement for our addressing algorithm
is that it be optimally consistent in the following sense:
when an front-end server leaves or enters the pool, as few
files as possible are re-addressed to different servers, so
that caching is disrupted as little as possible.

The two requirements of respecting weight and re-
addressing a minimum number of files are quite limit-
ing. For example, suppose that a pool has three front-end
servers of weight 100, and two servers of weight 200. If
a new server of weight 200 is added to the pool, not only
must the new server be assigned two-ninths of the files in
the content library as a whole, but more specifically for
each of the other servers it must take over two-ninths of
the files that server was handling.

Figure 3 depict roughly what must happen when
servers join and leave the pool if weights are to be re-
spected and a minimum number of files are to be re-
assigned.

A third requirement on our hashing algorithm arises
from the fact that a proportional distribution of files
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Figure 4: Video popularity follows a power law distribu-
tion.

among servers does not necessarily result in a propor-
tional distribution of requests. Perfect caching is in con-
flict with perfect load balancing, because some files may
be more popular than others. Indeed, a single file may
be hotter than any front-end server in the pool could han-
dle by itself. There must be a way to detect hot files
and/or detect overloaded servers, so that traffic can be
distributed away from affected servers.

The load-balancing requirement could be hacked in to
the distribution system as an exception to our consistent
hashing algorithm, for example simply by saying that
files beyond some popularity threshold are evenly dis-
tributed between all front-end servers.

Instead of distributing popular streams to all front-end
servers, we distribute only to two or three or however
many are necessary to meet demand. The means that our
algorithm must produce more than a consistent server as
output; it must produce a consistent server list.

Figure 4 shows distribution of requests over the con-
tent served by our video service. Most requests are for a

small number of popular or head content; however, there
are still many requests spread over the long tail of less
popular content. Similar distributions of popular content
have been observed for other services as well [18].

The head content served by Yahoo! is so popular that
a single front-end server cannot handle all user requests
for a single video. The request router must have a mech-
anism to distribute hot content to more servers than one
front-end server. A few extra cache misses are less prob-
lematic than a server being completely overwhelmed by
a piece of head content.

The majority of user requests for video, however, are
requests that could (and should) be handled by a single
server. Therefore, it is equally important that the number
of pieces of tail content addressed to each server be pro-
portional to that server’s capacity. Although our front-
end servers are generally homogeneous, new front-end
servers we add to the cluster inevitably have different ca-
pacity than existing servers. As we distribute requests
across the cluster, we need to take into account the dif-
ferent capacities of the front-end servers.

Our platform is deployed as a cluster of video servers
spread across the world, so we need to take geolocal-
ity into account. However for unpopular content, it is
more effective to serve the content from a remote loca-
tion rather than try to make the content geographically
local. As content becomes more popular we want clients
to access them from servers that are close to them.

Finally, our video service is a 24/7/365 operation. We
need it to be elastic: we need to be able to add and re-
move servers from the running system. We also need it
to be fault tolerant: we need to gracefully handle the fail-
ure and recovery of front-end servers.

3 Overview

We drive caching and locality decisions based on content
popularity. Zebra decides which non-local popular con-
tent should be cached closer to the requestor. Local con-
tent will be cached at an optimal number of local servers
based on popularity.

Zebra routes popular requests for popular content to
the cluster closest to the nearest locale and unpopular
content to the home locale. Zebra initially considers all
content as unpopular, so the first request for a particular
video will be directed to the home locale. Subsequent re-
quests for the same content will cause Zebra to consider
the content as popular and direct requests to the nearest
locale. Because of the number of videos served we want
to do this popularity detection in a way that uses only
soft state and can be tracked with a fixed, and relatively
small, amount of memory.

Local content caching uses a Stateless, Proportional,
Optimally-Consistent Addressing Algorithm (SPOCA)



to route content requests to our front-end servers rather
than simple VIPs. Given the name of a piece of con-
tent and a list of front-end servers, the algorithm deter-
ministically maps the content to a single front-end server.
Two request routers will independently arrive at the same
mapping, and the same request router will make the same
mapping repeatedly without having to remember any-
thing. The computation is faster than database lookups,
and the only communication overhead required is the list
of active front-end servers.

SPOCA is consistent beyond being deterministic.
Front-end servers will occasionally drop out of the clus-
ter due to outages or maintenance, and new servers will
occasionally be added to refresh technology or increase
capacity. When the list of active servers changes, it is
unacceptable for the mapping of content to servers to
wholly change. Indeed, for optimal consistency, content
should never be re-mapped from server A to server B un-
less A left the cluster or B joined the cluster. In other
words, if server A and server B are present both before
and after the cluster changes, then no content can be re-
mapped from one to the other.

To serve content we
of content served a unique name the form
Content-ID.domain. The Content-ID is
deterministically derived from the identifier of the
content, the hash of the filename for example. domain
corresponds to the pool to which a piece of content be-
longs. domain also represents a valid DNS subdomain
managed by Yahoo!. Thus, Content-ID.domain
is a valid DNS name that can be resolved by a DNS
server. We have a special DNS server, called Polaris,
that works with Zebra and SPOCA to route a request to
the appropriate server.

During DNS resolution Zebra and SPOCA deter-
mine the front-end server to route the request to;
Polaris directs the client to that server by resolving
the request for Content-ID.domain to the de-
termined front-end server’s IP. Web pages that em-
bed content to be served uses a URL of the form
http://Content—-ID.domain to address the con-
tent.

assign each piece

4 The Zebra Algorithm

Zebra handles the geographic component of request rout-
ing and content caching. Its main caching task is to de-
cision out when requests should be routed to content’s
home locale and when the content should be cached in
the nearest locale. Zebra makes this decision based on
content popularity.

Zebra tracks popularity using soft state with a limited
amount of memory. Bloom filters [2] seem like a good
data structure to use for this kind of tracking. As requests

for content come in, we can add them to the bloom filter
to track popularity. Unfortunately, it is not possible to
remove content from the bloom filter. So we need a way
to stop tracking content that is no longer popular.

Rather than using a single bloom filter, Zebra uses a
sequence of bloom filters (we use 17 filters in produc-
tion). Each bloom filter represents requests for a given
interval, on the order of hours. We keep a fixed number
of filters in the sequence and expire older filters as new
are added. Content is considered popular based on the
union of the intervals. We optimize the popularity check
by combining all the bloom filters older than the current
interval into one after the start of a new interval, so that
popularity checks involve lookups in only two bloom fil-
ters.

Note that even if we had used a more sophisticated
bloom filter structure, such as counting bloom filters [7],
we would still need to track entries to be deleted because
they are no longer popular. Our strategy of using a se-
quence of bloom filters both tracks and removes entries
that are no longer popular using simple bloom filters.

If content is deemed popular, it is in one of the two
bloom filters, the content will be cached locally. Not only
does Zebra enable more effective geographic caching, it
also enabled us to decouple delivery from storage. It now
makes sense to have content serving front-ends in a data
center that has no content storage servers. Popular con-
tent will be cached locally at the front-end servers and
unpopular content requests will be routed to its home lo-
cale.

Zebra determines which serving clusters will handle
a given request based on geolocality and popularity.
SPOCA determines which front-end server within that
cluster will cache and serve the request.

5 The SPOCA Algorithm

To maximize the cache utilization at the front-end servers
and thereby minimize the load on our storage farm
SPOCA aims to localize requests for a given video at
a single server. This will allow the best utilization of the
aggregate memory of the front-end servers. We also need
to balance the load across the front-end servers and han-
dle failures and server additions. Requests for a popular
video may overload a single server, so we need to be able
to assign the handling of such content to multiple front-
end servers. Finally, we have serving clusters around the
world, so we need to take geolocality into account.

Figure 5 illustrates how we would like content to be
served. Each video is served by one server. This de-
creases the load on the storage farm and it more effec-
tively uses the cache of the front-end servers. Since
vidl is a popular video we would like it to be served
by multiple servers.
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Figure 5: SPOCA consistently routes the same video to
the same front-end server. It also increases the number
of servers serving popular content. (e.g. vidl)

SPOCA fulfills our requirements using a simple con-
tent to server assignment function based on a sparse hash
space. Each front-end server is assigned a portion of the
hash space according to its capacity.

The SPOCA routing function takes as input the name
of the requested content and outputs the server that will
handle the request. The SPOCA routing function uses a
hash function to map names to a point in a hash space
as shown in Figure 6. Each front-end server is assigned
a portion of hash space proportional to its capacity. Not
every point in the hash space maps to a front-end server,
so when the hash of the name of a requested video maps
to unassigned space, the result of the hash function is
hashed again until the result lands in an assigned portion
of the hash space.

Using this hashing scheme SPOCA load balances con-
tent requests using random load balancing in such a way
that it can gracefully handle failures, the addition and re-
moval of front-end servers, and popular content.

5.1 Failure handling

If a front-end server fails, the portion of the hash space
that was assigned to the failed server becomes unas-
signed as shown in Figure 7. Requests that would have
been assigned to the failed server are rehashed as normal
until they land in a region assigned to an active server.
This has the nice property that only the content assigned
to the failed server will be re-routed to other servers
in a balanced fashion. Content assigned to the servers
that have not failed will continue to be served by those
servers, which allows us to continue to utilize effectively
the cached content at those servers.

Hlvid1) ]
Server 1
Server 2
Storage
Farm
H(H(vid1))

Server 3

Server 4

Figure 6: An example assignment of the SPOCA hash
map. The name of the requested video initially hashes to
empty space, but when hashed again is assigned to server
3.
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Figure 7: When server 3 fails, the content handling for
the named video is reassigned to server 2.
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Figure 8: When server 5 is added, the content handling
for the named video is reassigned to server 5.

5.2 Elasticity

New servers are mapped into the unassigned portion of
the hash space as shown in Figure 8. When this hap-
pens a portion of the content assigned to other servers
will now be assigned to the new server. For example, in
Figure 8 the video that was previously handled by server
3 will now be handled by the new server, server 5. Server
3 may have vidl content in its cache because of previ-
ous requests. Eventually server 3 may end up replacing
vid1l with other content it is serving. If vidl becomes
popular or server 5 fails, server 3 will again start serving
vidl.

Servers are removed from service by simply remov-
ing their assignments from the hash space. This will
cause the mechanism described in the previous section
to kick in and content served by the removed server will
be spread to other active servers.

5.3 Popular content

SPOCA tries to minimize the number of servers that
cache a particular piece of content to maximize the ag-
gregate number of cached objects across the front-end
servers. This strategy works well with tail content, un-
popular content, but it can cause front-end servers for
head content, popular content, to become overloaded.
So, for head content we need to route requests to mul-
tiple front-end servers. We do this routing using a simple
extension to the SPOCA routing mechanism described
earlier. Popular files are handled by the same algorithm
that deals with missing servers, so a page-in for either
may benefit the other.

To handle popular content, the request router stores the
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Server 3
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Figure 9: When a request for vidl is received, SPOCA
routes the request to server 3 and stores the hash in the
popularity window.

hashed address of any requested content for a brief pop-
ularity window, 150 seconds in our case. On every new
request, the request router checks whether it has a saved
hash for the requested content. If no hash is present, the
request is routed to a front-end server using the normal
procedure. If a hash is present, meaning the content has
been served within the popularity window, routing will
start using the stored hash rather than the name of the re-
quested content. In either case, only the final hash (i.e.
the address where the request was ultimately routed) is
saved along with the content name.

Figure 9 shows the routing for vidl with the popu-
larity window. Because popularity window did not have
a entry for vidl the request will be routed the same as
Figure 6. If another request is received in the popular-
ity window, as shown in Figure 10, the routing will start
with the hash stored in the popularity window rather than
the hash of vidl. Note that the server that handles over-
flow is the same server as handles requests for vidl if
server 3 fails as shown in Figure 7.

When the popularity window expires, the stored hash
for each object is discarded regardless of how recently
it was used. It follows that each object may be mapped
to as many different servers as there are requests for that
file within the popularity window. For a given object, the
sequence of servers to which it is routed is the same in
each popularity window, with the number of requests de-
termining how deeply into the sequence the mapping ad-
vances. An object which is never requested twice within
the same popularity window is always mapped to the
same server.
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Figure 10: When the next request for vid1l is received,
SPOCA uses the hash in the popularity window to start
the routing and routes to server 2 and stores the updated
hash in the popularity window.

If a file is temporarily popular enough to be distributed
to two servers, both will cache it. If later the first server
is unavailable, the second server will resume primary
responsibility for the file it already has cached, rather
than that file being re-assigned elsewhere. Similarly if
a server goes down for a while, the files for which it is
responsible will be cached elsewhere. If, after that server
has come back on line, one of its files becomes popular
enough to be distributed to a second server, that second
server will already have the file in cache.

The load balancing for hot files is not absolutely state-
less, but the request router does not need to store an entry
for each of the 20,000,000 unique files in the library, or
even the 800,000 unique files requested in a day, merely
the 20,000 unique files it has seen in the last 150 seconds.
This amount of data can easily be held in memory.

The larger the time window, the greater the permitted
load imbalance between servers. The shorter the time
window, the greater the unnecessary duplication of files.
It is a balance between inefficiencies.

Keeping a histogram of recent files would be greater
overhead, and would in any case not answer the impor-
tant question, namely whether we prefer the inefficiency
of load imbalance or the inefficiency of redundant copies.
The information necessary to decide about that tradeoff
is not available to the stream router.

5.4 Memory management

The original media server caching policy waited too long
to bring content from the filers into local cache. We

decided to use a more aggressive policy with SPOCA.
When explaining this policy we use the terms page-in
and page-out to describe the actions of populating the
cache with a piece of content and evicting a piece of con-
tent from the cache. The new caching policy, embodied
in SPOCA, goes to the extreme to correct the problem of
unresponsiveness: SPOCA calls for content to be paged
into local cache as soon as it is requested. This raises
an obvious question: is immediate page-in the right ap-
proach?

The traditional concern with aggressive caching is that
it causes churn, which is to say that a less-popular item
will be brought into cache, forcing a more-popular item
to be deleted from cache. The old caching system re-
flected the traditional mindset: that system was designed
to prevent churn by tracking whether an item was truly
popular before paging it in. In our configuration, how-
ever, churn is not the primary issue.

In light of increasing disk sizes and improvements to
the distribution of requests among media servers, it is
reasonable to suppose that a media server can cache ev-
ery stream that is requested for an entire week. We ob-
served that whenever a file is requested, the probability
that it will be requested again within a week is 69% for
ads, 80% for audio, and 83% for video, so even a random
new file we are getting our first request for is likely to be
more popular than the oldest file in our cache.

However, even if churn is low, even if cache misses
have been reduced to an absolute minimum, there is an-
other potential reason not to page in aggressively, namely
that paging in itself causes load on the filer. If we recall
that the objective of the caching system is to reduce filer
load, then we must reduce both cache misses and page-
ins. The policy of immediate page-in may save less in
cache misses than it costs in page-ins.

Indeed, an average page-in may place a greater bur-
den on a filer than an average cache miss, because in the
case of a cache miss, the user may not view the entire
stream, so the filer can quit serving it partway. We have
a question that cannot be decided in the abstract: It takes
real data to know whether 20% of the average stream is
viewed, or more, or less.

It is possible, however, that a page-in places a lesser
load on a filer than a cache miss. This is because the
filer can serve a page-in request at full speed, reading the
whole file contiguously, whereas to stream a file the filer
has to stream it out byte by byte.

What we observed was that for the video media
servers, the immediate page-in policy is correct. In most
cases we load the filer the least by paging in immediately,
which works very well with our general desire to be as
responsive as possible.



5.5 SPOCA Implementation

SPOCA’s consistent hashing algorithm implementation
is based on the standard C pseudo-random number gen-
erator. In extreme circumstances, linear congruence gen-
erators may have undesirable properties, but for distribut-
ing traffic based on filename they are quite sufficient.

Since each file has a Content—ID this number is
used as the seed for our pseudo-random number genera-
tor. Thus it can generate an arbitrarily-long, determinis-
tic sequence of numbers, uniformly scattered in the unit
interval.

When an front-end server is entered into a pool, it
is assigned a segment of the unit interval that does not
overlap with any other server’s segment. The length of
the segment represents that server’s weight. Upon re-
ceiving a request for a file, SPOCA generates pseudo-
random numbers within the unit interval until one lies
within a segment that has been mapped to a server. Al-
gorithm 1 shows the basic logic to map a request for con-
tent, filename, to a server. At the heart of the algo-
rithm is the function maptoserver (seed), which re-
turns the server whose assigned segment includes seed.
Failures are also reflected in maptoserver (seed).
If SPOCA detects that a front-end server has failed,
maptoserver (seed) will return null for any
seed that falls in the failed servers assigned interval.

When a new server is added to the pool, the load is
evenly distributed among all the servers. What it means
is that the new server takes some load from each of the
existing servers in the pool. On the same lines, when
a server goes down, it takes the load which that server
was handling and re-distributes to the other servers in the
pool.

Algorithm 1 Pseudo-Random Generation Algorithm
1: seed := filename;
seed := rand(seed);
while maptoserver(seed) = NULL do
seed := rand(seed);
end while

AN A

return maptoserver(seed)

In order to allow for the painless addition of future
front-end servers, our servers typically cover only 1% to
25% of the unit interval, depending on our anticipation
of future growth. Note that if the mapping of front-end
servers covers only 1% of the unit interval, then SPOCA
will have to generate an average of 100 pseudo-random
numbers to distribute one request. Even so this algo-
rithm causes negligible latency, because linear congru-
ence generators are so simple.

On the rare occasion that one wishes to add servers
after an interval becomes entirely mapped, it is best to
shrink all existing segments to a some fraction of their
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size, causing a corresponding fraction of disruptions in
caching. However, sparsely assigning the unit interval,
creates enough room for years of foreseeable needs. By
starting with only 1% of the unit interval assigned, we
can grow a cluster to almost 100 times its initial size be-
fore worrying about running out of room. In our experi-
ence so far, we have been able to plan ahead and avoid
any such re-mapping.

SPOCA controls distribution of popular files by saving
a seed for each £ilename for a configurable length of
time 7'. Every time T’ elapses, all saved seeds are thrown
away. If a request arrives for a file for which the request
router has a saved seed, that file is deemed to be popu-
lar, and the generation of pseudo-random numbers starts
from the saved seed rather than from the £ilename.
Algorithm 2 shows how the previous algorithm can be
modified to incorporate this behavior.

Algorithm 2 Distribution Algorithm

1: if savedseed[filename] = NULL then

2 seed := filename;

3: else

4: seed := savedseed[filename];

5: end if
6: while maptoserver(seed) = NULL do
7.

8
9

seed := rand(seed);
: end while
: savedseed|[filename] := seed
10: return maptoserver(seed)

A stream requested N times within the interval 7" may
be distributed to as many as N servers. Every time the
saved seeds are thrown away, the pseudo-random se-
quence starts over from the filename. If a file is never
popular enough to be requested twice within 7', the file-
name will always be used as the seed, and thus it will
always be distributed to the same server.



6 Evaluation

We use historical data we have collected over time from
production to evaluate the quality and performance of our
proposed algorithms. The dataset shown in Figure 11
covers Q1 2004 to half of Q1 2007. The amount of con-
tent stored and distributed has been approximately dou-
bling year-over-year.

When storage and distribution each double, requests
served from the filers quadruple. We could run into a
situation where we would need four times the filers to
support scaling delivery by two times. The reason for
this is because the cost model was not linear. There were
limitations on IO performance of the filers and it was
not a linear growth. We were consistently seeing 100%
CPU hit on the filers even for the 10% cache miss. With-
out SPOCA, we would need more hardware as we start
serving more requests from the filer.

We observed in our production environment that load
balancing with SPOCA is three times better than load
balancing by VIP because SPOCA’s hashing function de-
terministically routes to the right server to serve the re-
quest whereas VIP routing does simple random routing
without regard to where content may be cached. Note
that this is not one server getting three times the load
of another, as might happen in a peer-to-peer system
which does not guarantee a partition of the address space
proportional to server weights. The variation among
servers is rather three times the small amount produced
by random request routing. This increased variation is
smoothed out by the law of large numbers: the more re-
quests distributed by the request router, the closer to an
average load each front-end server gets. For the delivery
platform, load balancing has never been an issue since
SPOCA was implemented, whereas the caching problem
SPOCA solved was quite serious.

Over 99% of files accessed in any given day are not ac-
cessed often enough to trip the popularity trigger. There-
fore these files are cached on only one front-end server
each. As a file grows more popular it does not necessar-
ily get distributed to the entire cluster. Instead it is spread
to two, three, four servers and so on in linear proportion
to how popular the file is. No more cache misses are
created than are necessary for load balancing.

Only 0.01% of all files are popular enough to be
cached on all front-end servers. No additional mecha-
nism for identifying such files is necessary. Each server’s
probability of being the next server in the sequence to
which a hot stream is mapped is proportional to that
server’s weight. The fail over mechanism therefore load-
balances extremely popular content in the same propor-
tions as it maps tail content.

With SPOCA we have been able to reduce cache
misses by 5x. Each item is now cached on as few me-
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dia servers as possible (usually one media server in each
location instead of all servers in a pool). There is also an
increase in stability with larger globally distributed clus-
ters of front-end servers. Our serving clusters grew from
8 servers to 90. The management of this single large
cluster was much easier than managing many small clus-
ters. Because SPOCA automatically adapted to differ-
ent workload profiles on a per file basis, we no longer
needed to use separate pools for the different workloads.
We were eventually able to consolidate 11 pools into a
single pool, which also allowed us to further simplify
management.

Without implementing SPOCA, video streaming from
filers was approximately 219 terabytes daily. Refer to
Figure 12 which shows the graphs for filer storage v/s
filer streaming of video assets. After implementing
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SPOCA, we see a drastic reduction (5x) in the number of
bytes streamed from the filers. Video Streaming from fil-
ers with SPOCA reduced to approximately 44 terabytes
daily. Fig 13 shows the performance improvements with
SPOCA.

A further benefit of SPOCA has been substantially in-
creased memory cache hits. Torso content (less popu-
lar than head content but more popular than tail content)
was formerly distributed between many servers. It was
in disk cache everywhere, but qualified for promotion to
the memory cache nowhere. With consistent addressing,
however, torso content requests are collected and focused
on a single front-end server, sometimes making the con-
tent popular enough for promotion to memory cache on
one server before it needs to be paged into disk cache
anywhere else.

As the video assets stay more in cache, streaming from
filers is reduced and hence the need to add more filers
also goes down as we saw from Fig 13.

Fig 14 is a projection model of the costs saving on
the filer. More than $350 million dollars in unnecessary
equipment (filer costs, rack space etc) alone can be saved
in five-year period of running with SPOCA. In addition
to the substantial savings in filer costs, the hidden cost
savings included Power savings for running the equip-
ments and data center utilizations.

The size of the popularity window is a tunable parame-
ter. A smaller window results in fewer disk cache misses
and more memory cache hits at the cost of greater load
imbalance due to hot files. The window of 150 seconds
for the SPOCA has driven the cache misses low enough
while keeping the load balancing is even enough, such
that we have not had to fiddle with the parameter to find
the perfect sweet spot.

Table 1 shows us the traffic pattern for one of our data
centers (S1S). It is pretty impressive that S1S missed
0.7% on the Flash workload and 0.4% on the Down-
load workload on 3/14. The numbers would have been
even better, but we had a server that lost it’s RAM drive
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Figure 15: Increased memory cache hits across all server
by lowering the popularity window from 300 secs to 240
secs. The change was rolled out to servers over a period
of weeks.

which adversely affected those numbers. The traffic pat-
tern is a little variable, but on the whole SPOCA has ap-
parently reduced cache misses in S1S by almost a fac-
tor of ten. From this table (Table 1), we also see that
the Download RAM hit went down from 70% on 3/7 to
21% on 3/10 and to 14.2% on 3/14. This drop can be
attributed to server misconfigurations or the in-memory
index database getting corrupted after server reboots.

In production we measured how drastically we re-
duced the costs to store the bytes on the memory v/s the
disk cache. Our measurements indicate that SPOCA im-
proved memory cache hits from from 45% to 70%, and
the overall cache hits increased from 95% to 99.6%. Due
to this an item stays in cache for an increased duration
(5X of the time it stayed earlier. e.g. what stayed in for
only three hours now stays for 15 hours). We can also
scale storage hardware linearly instead of quadratically,
thus directly positively impacting cost.

Fig 15 shows the impact of increased memory cache
hits from lowering the popularity window (referred to
as T in Section 5.5) from 300 seconds to 240 seconds.
This window governs the reset of the sequence of servers
which are obtained from maptoserver (seed) func-
tion. A shorter window results more the cache hits be-
cause the requests are concentrated on fewer servers. But
there is a trade-off here. If we make the window too
small, we can use too few servers to serve a popular
stream and overload the servers. The figure shows the
three main pools in our three main locations. Further ad-
justments and measures have lead us to use a popularity
window of 150 seconds in our production environment.

The improvement in memory cache hits from SPOCA
was less dramatic: it only improved from 49% to 70%.
However, the improvement in cache misses was more
dramatic: it went from 5% all the way down to 0.5%,
i.e. a factor of ten! We later bumped up the memory
cache hits by adding more RAM, refreshing some of the
older hardware with beefier boxes.



2/26 3/1 3/5 3/7 3/10 3/14
Download cache miss | 9.7% 7.2% 4.3% 3.7% 1.8% 0.4%
Download cache hit 90.3% | 92.8% | 95.7% | 96.3% | 98.2% | 99.6%
Download RAM hit 42.4% | 66.0% | 63.4% | 70.0% | 21.0% | 14.2%
Flash Cache miss 21.8% | 13.5% | 22.0% | 14.8% | 2.5% 0.7%
Flash RAM hit 572% | 81.4% | 66.1% | 71.5% | 90.0% | 90.1%

Table 1: Cache Hit and Misses for the Download and Flash Pools in S1S data center

6.1 Churn Times

To amplify the hit rate, some classical caching schemes
can be employed. For example, prefetching, whereby
the content is cached to anticipate future requests. These
techniques can also reduce the average hops between
servers for content delivery. However, we cannot
prefetch all the content, because of various limitations
including bandwidth and storage costs. One way to eval-
uate the effectiveness of a cache is to look at its churn
time. We define churn time as the period of time an item
remains in the cache. A high churn time means that on
average an item stays in cache for a long time before be-
ing replaced. There have been various models for study-
ing the right cache size for the content type and churn
times [14, 22].

We examined the churn times on our various pools of
servers across a couple of different data centers. Table
2 has the statistics on churn times from disk cache and
Table 3 has the churn times from memory cache from
the various pools across multiple data centers. The way
to read the table is this: If something is being removed
from cache to make room, then it has not been accessed
in X time. In table 2, we see that the churn time for
DAL - DLOD pool is 8.2 days, which means that the
content stays in disk cache for 8.2 days before its churned
out. Similarly, in S1S data center, content would stay
in Windows Media Pool (WMOD) for 2 years before its
removed. However, if we look at table 3, we see that the
memory churn time for DAL - DLOD pool is 2.5 hours
and in S1S, churn time for Windows Media Pool is 3.8
hours.

The bigger numbers are based on our projection model
because when we did this study, the system was not in
production for long enough.

7 Related Work

Figure 16 shows a comparison with options engineer-
ing had during the design of SPOCA. Our main require-
ments at that time were proportional distribution of head
and tail content, Consistent addressing/Good caching
scheme and the ability to scale by adding/removing
servers. Some of the schemes we looked at addressed
part of our requirements but none addressed all. We
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had Foundry Networks [3] address three requirements
but didn’t provided a consistent addressing or caching
scheme. Similarly, Microsoft’s cache array routing pro-
tocol (CARP) [21] partitions the URL space among prox-
ies. CARP uses hash-based routing to provide a deter-
ministic request resolution path and eliminates the dupli-
cation of contents that otherwise occurs on an array of
proxy servers. CARP made it possible to plug additional
servers into the cache array or subtract a server from the
array without massive reconfigurations and without sig-
nificant cache reassigning. Its cache-management fea-
tures provide both load balancing and fault tolerance.
But it failed to deliver proportional tail content and
missed on addressing one of our requirement.

Our VIP routers do load balancing based on round
robin servicing of connections. Network Dispatcher [11]
was early work on this type of router. Round robin DNS
is another way to do load balancing. These methods as
well as other common methods are described in ONE-IP
[5]. As we noted earlier these approaches balance the
load, but do not use the aggregate memory of the cluster
efficiently.

Caching services such as CoralCDN [8] and Aka-
mai [15] use DNS resolvers to direct clients to caching
proxies that are close to clients. Like SPOCA, they serve
content to unmodified clients and are excellent at dis-
tributing popular content. Much of SPOCA’s traffic is
made up of a many requests for various unpopular con-



E: (Cache) DAL

DLOD 8.2 days
WMOD 40 days
FLOD 9 months

A2S S1S
4.5 days 40 days
5.5 months | 2 years
1.4 years | 1.5 years

Table 2: Statistics about churn times from the disk cache.

R: (RAM) DAL
DLOD 2.5 hours
WMOD 1 hour
FLOD 4 hours

A2S S1S
35 mins 40 mins
4.5 hours | 3.8 hours
5.8 hours | 6.4 hours

Table 3: Statistics about churn times from the memory cache.

tent that can pollute the front-end caches. For this reason
SPOCA does not always choose to direct clients to local
front-end servers for unpopular content.

The SPOCA router tries to use the aggregate memory
of the front-end servers as one big cache. Locality-aware
request distribution (LARD) [16] combined cooperative
caching with request routing to achieve load balancing
and effective cache utilization. LARD routes content
based on load and uses a table indexed by the content
identifier to consistently route requests. SPOCA’s con-
sistent routing function achieves load balancing without
using a table entry for every cached object. We also han-
dle popular content and failures with this same routing
function.

As in other consistent addressing schemes [12, 23, 20],
we assign each front-end server a section of an address
space, and hash file names into this space in order to
map files to servers. However, unlike any other scheme
we are aware of, the address space is not completely as-
signed. Some addresses belong to no server. Specifi-
cally, a server is not responsible for all addresses between
its own address and the address of whichever server is
next in the hash space, as in distributed networks such
as Chord [19]. Instead, each server is assigned a fixed
section of the address space which is proportional to its
capacity. Some systems [6, 1] which use consistent ad-
dressing mitigate the load balancing problems of Chord
by mapping to many virtual servers using a hash func-
tion and then mapping sets of virtual servers to physical
servers according to load. While this does allow coarse
grained load balancing, it still does not handle popular
content that needs to be served by multiple machines.

RUSH [10], scheme allows for cluster weights, thus
insuring proportionality, but is not optimally consistent.
When a cluster is removed or has its weight decrease,
it not only causes the necessary shifting from itself to
other clusters, it can cause shifting between other clus-
ters. Also dynamic handling of hot streams is not cov-
ered.

Peer-to-peer networks are the most common applica-
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tions of consistent addressing, but in peer-to-peer net-
works an appropriate partition of the address space is
quite difficult to achieve. For example, in a 2005 tech-
nical paper, Giakkoupis and Hadzilacos [9] present a
method of insuring that the largest section of the par-
titioned address space is no more than four times the
size of the smallest section. Considering the complica-
tion that not all servers have equal capacity, their guaran-
tee worsens to an eightfold imbalance between the most-
loaded and least-loaded server, relative to each server’s
capacity.

Moreover, to achieve this factor-of-eight guarantee,
Giakkoupis and Hadzilacos weaken the optimal consis-
tency criterion, allowing up to twice the minimum con-
tent re-mapping when servers leave the cluster. This fur-
ther underscores the tension between consistent address-
ing and proportional load balancing.

Consistent hashing [12] was proposed to handle popu-
lar content without swamping a single server. It extends
work done by Harvest Cache [4] and Plaxton and Ra-
jaraman [17]. The consistent hashing work was incorpo-
rated into a web cache [13] that used consistent hashing
to route content requests to servers. Unlike SPOCA the
web cache work does not use the same mechanism for
load balancing, fault tolerance, and popularity handling.
They also always serve requests close to clients, even if
the content is unpopular.

8 Conclusion

Zebra and SPOCA routing simultaneously handles our
requirements for load balancing, fault tolerance, elastic-
ity, popularity, and geolocality. They do so using a sim-
ple mechanisms that nicely handle the different require-
ments in a consistent way.

Zebra and SPOCA do not have any hard state to main-
tain or per object meta-data. This allows our implemen-
tation not to have to worry about maintaining and recov-
ering persistent state. It also eliminates any per object
storage overhead or management, which simplifies oper-



ations.

Operations were also simplified by the ability to con-
solidate content serving into a single pool of servers that
can handle files from a variety of different workloads.
Further the ability to decouple the serving and caching
of content from the storage of that content allowed us
greater flexibility in architecting our caching and storage
infrastructure. Specifically, this decoupling allowed us
to have front-end clusters without any local content that
only cache popular remote content.

In a for-profit corporation, cost savings and end user
satisfaction are key success metrics. SPOCA excels on
both accounts. We have seen great cost savings with a
corresponding increase in the performance of our serving
cluster.
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