Phantom: Privacy-Preserving Deep Neural Network Model Obfuscation in Heterogeneous TEE and GPU System

Authors: 

Juyang Bai, Johns Hopkins University; Md Hafizul Islam Chowdhuryy, University of Central Florida; Jingtao Li, Sony AI; Fan Yao, University of Central Florida; Chaitali Chakrabarti and Deliang Fan, Arizona State University

Abstract: 

In this work, we present Phantom, a novel privacy-preserving framework for obfuscating deep neural network (DNN) model deployed in heterogeneous TEE/GPU systems. Phantom employs reinforcement learning to add lightweight obfuscation layers, degrading model performance for adversaries while maintaining functionality for authorized user. To reduce the off-chip data communication between TEE and GPU, we propose a Top-K layer-wise obfuscation sensitivity analysis method. Extensive experiments demonstrate Phantom's superiority over state-of-the-art (SoTA) defense methods against model stealing and fine-tuning attacks across various architectures and datasets. It reduces unauthorized accuracy to near-random guessing (e.g., 10% for CIFAR-10 tasks, 1% for CIFAR-100 tasks) and achieves a 6.99% average attack success rate for model stealing, significantly outperforming SoTA competing methods. System implementation on Intel SGX2 and NVIDIA GPU heterogeneous system achieves 35% end-to-end latency reduction compared with most recent SoTA work.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.